Approximation Algorithms (2nd, corr. ed. 2002. XIX, 378 p. 24 cm)

個数:

Approximation Algorithms (2nd, corr. ed. 2002. XIX, 378 p. 24 cm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 378 p.
  • 商品コード 9783540653677

基本説明

"..covers the dominant theoretical approaches to the approximate solution of hard combinatorial optimization and enumeration problems..."- Richard Karp, University of California at Berkeley.

Full Description

Most natural optimization problems, including those arising in important application areas, are NP-hard. Therefore, under the widely believed conjecture that P≠NP, their exact solution is prohibitively time consuming. Charting the landscape of approximability of these problems, via polynomial-time algorithms, therefore becomes a compelling subject of scientific inquiry in computer science and mathematics. This book presents the theory of approximation algorithms.

This book is divided into three parts. Part I covers combinatorial algorithms for a number of important problems, using a wide variety of algorithm design techniques. Part II presents linear programming based algorithms. These are categorized under two fundamental techniques: rounding and the primal-dual schema. Part III covers four important topics: the first is the problem of finding a shortest vector in a lattice; the second is the approximability of counting, as opposed to optimization, problems; the third topic is centered around recent breakthrough results, establishing hardness of approximation for many key problems, and giving new legitimacy to approximation algorithms as a deep theory; and the fourth topic consists of the numerous open problems of this young field.

This book is suitable for use in advanced undergraduate and graduate-level courses on approximation algorithms. An undergraduate course in algorithms and the theory of NP-completeness should suffice as a prerequisite for most of the chapters. This book can also be used as supplementary text in basic undergraduate and graduate algorithms courses.

 

Contents

1 Introduction.- I. Combinatorial Algorithms.- 2 Set Cover.- 3 Steiner Tree and TSP.- 4 Multiway Cut and k-Cut.- 5 k-Center.- 6 Feedback Vertex Set.- 7 Shortest Superstring.- 8 Knapsack.- 9 Bin Packing.- 10 Minimum Makespan Scheduling.- 11 Euclidean TSP.- II. LP-Based Algorithms.- 12 Introduction to LP-Duality.- 13 Set Cover via Dual Fitting.- 14 Rounding Applied to Set Cover.- 15 Set Cover via the Primal—Dual Schema.- 16 Maximum Satisfiability.- 17 Scheduling on Unrelated Parallel Machines.- 18 Multicut and Integer Multicommodity Flow in Trees.- 19 Multiway Cut.- 20 Multicut in General Graphs.- 21 Sparsest Cut.- 22 Steiner Forest.- 23 Steiner Network.- 24 Facility Location.- 25 k-Median.- 26 Semidefinite Programming.- III. Other Topics.- 27 Shortest Vector.- 28 Counting Problems.- 29 Hardness of Approximation.- 30 Open Problems.- A An Overview of Complexity Theory for the Algorithm Designer.- A.3.1 Approximation factor preserving reductions.- A.4 Randomized complexity classes.- A.5 Self-reducibility.- A.6 Notes.- B Basic Facts from Probability Theory.- B.1 Expectation and moments.- B.2 Deviations from the mean.- B.3 Basic distributions.- B.4 Notes.- References.- Problem Index.

最近チェックした商品