高温気体力学入力<br>High Temperature Gas Dynamics : An Introduction for Physicists and Engineers

個数:

高温気体力学入力
High Temperature Gas Dynamics : An Introduction for Physicists and Engineers

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    各国での新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。
    弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。

  • 製本 Hardcover:ハードカバー版/ページ数 359 p.
  • 商品コード 9783540408857

基本説明

Special topics are included that are rarely found in other textbooks, such as the thermophysical and transport properties of multi-temperature gases and a novel method to compute radiative transfer.

Full Description


A class-tested primer for students, scientists and engineers who would like to have a basic understanding of the physics and the behaviour of high-temperature gases. It is a valuable tool for astrophysicists as well. The first chapters treat the basic principles of quantum and statistical mechanics and how to derive thermophysical properties from them. Special topics are included that are rarely found in other textbooks, such as the thermophysical and transport properties of multi-temperature gases and a novel method to compute radiative transfer.

Table of Contents

  1 Introduction                                   1  (4)
2 Introduction to Quantum Mechanics 5 (20)
2.1 Line, Band and Continuous Spectra 6 (5)
Rohr's Atomic Theory
2.2 Wave-Particle Dualism and Wave Mechanics 11 (12)
2.2.1 Rigid Rotors 13 (3)
2.2.2 Harmonic Oscillator 16 (4)
2.2.3 Anharmonic Oscillator 20 (3)
2.3 Exercise 23 (2)
3 Introduction to Statistical Mechanics 25 (34)
3.1 Bose, Boltzmann and Fermi Statistics 28 (5)
3.2 Thermodynamic Properties 33 (19)
3.2.1 Contribution of Translational Energy 36 (2)
3.2.2 Contribution of Rotational and 38 (11)
Vibrational Energy Forms
3.2.3 Contribution of Electronic Energy 49 (1)
3.2.4 Sample Calculations 50 (2)
3.3 Distribution of Energy Levels 52 (5)
3.4 Exercise 57 (2)
4 Radiative Properties of High Temperature 59 (44)
Gases
4.1 Basic Concepts and Laws 59 (9)
4.2 Gas Radiation and Equation of Energy 68 (16)
Transfer
4.3 Radiative Characteristics for Ionized 84 (10)
Gases
4.4 Evaluation of Radiation 94 (7)
4.5 Exercise 101(2)
5 Collision Processes for High Temperature 103(32)
Gases
5.1 Dynamics of Binary Collision 103(5)
5.2 Collision Cross-Section 108(14)
5.2.1 Collision Between Neutrals 108(6)
5.2.2 Collision Between Electrons and 114(3)
Neutrals
5.2.3 Ion-Neutral Collision 117(2)
5.2.4 Charged Particle Collision 119(3)
5.3 Collision Frequency, Mean Free Path 122(3)
5.4 Reaction Rates and Vibrational and 125(9)
Temperature Nonequilibrium
5.5 Exercise 134(1)
6 Equilibrium Composition of a Reacting Gas 135(32)
Mixture
6.1 Vant' Hoff Model of Chemical Reaction 136(3)
6.2 Heat of Reaction 139(2)
6.3 Properties of Mixture of Gases 141(1)
6.4 Equilibrium Composition of an Ideal 142(5)
Dissociating Diatomic Gas
6.5 Equilibrium Composition for a Multiple 147(5)
Component Gas
6.6 Equilibrium Composition for a Pure 152(6)
Monatomic Gas Plasma
6.7 Equilibrium Composition of a Multiple 158(4)
Temperature Gas Plasma
6.8 Temperature Derivatives of Equilibrium 162(3)
Gas Mixtures
6.9 Effect of Radiation 165(1)
6.10 Exercise 166(1)
7 Transport Properties of High Temperature 167(30)
Gases
7.1 Motion of a Singly-Charged Particle in 167(5)
Electromagnetic Fields
7.2 Collision-Dominated Ionized Gas 172(5)
7.3 Diffusion, Ambi-polar Diffusion and 177(6)
Mobility
7.4 Viscosity, Heat Conductivity and 183(5)
Electrical Conductivity
7.5 Diffusion and Radiative Heat Conduction 188(3)
7.6 Effect of Magnetic Field on the 191(3)
Transport Properties of Ionized Gases
7.7 Transport Properties of an Ideal 194(2)
Dissociating Gas
7.8 Exercise 196(1)
8 Boundary Effects for High Temperature Gases 197(20)
8.1 Emission of Electrons and Ions 197(7)
8.2 One-Dimensional Sheath Effects 204(8)
8.3 Heat Transfer 212(5)
9 Production of High Temperature Gases 217(24)
9.1 Thermodynamic Charts for Air Plasma 219(1)
9.2 Isentropic Flow in a Nozzle 220(3)
9.3 Gas State After a Shock 223(3)
9.4 Vibrational Relaxation Effects in Gas 226(4)
Dynamics
9.5 Electrical Breakdown in Gases 230(9)
9.6 High Frequency Discharges 239(2)
10 Diagnostic Techniques 241(18)
10.1 Temperature Measurement-Probe Method 243(4)
10.2 Temperature 247(7)
Measurement-Spectroscopical Methods
10.3 Temperature 254(2)
Measurement-Interferometric Methods
10.4 Velocity Measurement by Laser-Doppler 256(1)
Velocimeter
10.5 Exercise 257(2)
11 High Temperature Gas Dynamics 259(24)
11.1 Basic Equations 259(14)
11.2 Magneto- and 273(5)
Electromagneto-gas-dynamic Approximations
11.3 Wave Propagation 278(5)
12 Some Practical Examples 283(42)
12.1 Magneto-gas-dynamic Waves and Shocks 283(5)
12.2 Arc Plasma Flow in a Tube 288(7)
12.3 Impinging Plasma Jet 295(2)
12.4 Particle-Plasma Interaction 297(10)
12.4.1 Drag and Heat Transfer 299(6)
12.4.2 Internal Conduction 305(1)
12.4.3 Low Pressure Effects 305(1)
12.4.4 Particle Charging Effect 305(1)
12.4.5 Fluctuating Velocity and 306(1)
Temperature
12.5 A Transverse Blown Arc 307(4)
12.6 Magneto-gas-dynamic Flow Inside Ducts 311(3)
12.7 MGD Power Generation or Gas 314(6)
Acceleration
12.8 Plasma Manufacturing and Processing 320(3)
12.9 Weakly Ionized Plasma 323(1)
12.10 Exercise 323(2)
A Statistical Weights and Energy (cm-1) for 325(12)
Selected Atoms and Molecules
B Enthalpy (MJ/kmol) for Different Gases (1MJ = 337(2)
1 Mega Joule)
C Entropy (MJ/kmol) for Different Gases (1MJ = 339(2)
1 Mega Joule)
References 341(6)
List of Symbols 347(8)
Index 355