The Atomic Nucleus is a Relativistic System (2004. X, 351 p. w. 80 figs.)

個数:

The Atomic Nucleus is a Relativistic System (2004. X, 351 p. w. 80 figs.)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    各国での新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。
    弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。

  • 製本 Hardcover:ハードカバー版/ページ数 351 p.
  • 商品コード 9783540404927

Full Description


Relativity plays an important role in atomic nuclei, and, since the early 1970s, there has been increasing interest in, and literature on, the nucleus as a relativistic system. In fact, the relativistic treatment provides a powerful method to describe nuclear structure and reactions. It is thus an ideal time to collect and review the important landmarks in this book. Directed to advanced students and researchers, it explains both the underlying relativistic theory and compares predictions with actual experiments.

Table of Contents

  1 Introduction                                   1  (6)
2 Relativistic Quantum Mechanics and Fields 7 (18)
2.1 The Dirac Equation 7 (1)
2.2 Solutions for Free Particles 8 (3)
2.3 Relativistic Free-Field Theories 11 (9)
2.3.1 Real Scalar Field 12 (1)
2.3.2 Vector Field 13 (1)
2.3.3 Electromagnetic Field 13 (1)
2.3.4 Spinor Dirac Field 14 (1)
2.3.5 Real Scalar Field with Quartic 14 (6)
Self-Interaction
2.4 The Dirac Equation in a Central 20 (5)
Potential
3 Basic Features of the Meson Theory of 25 (14)
Nucleon-Nucleon Interactions
3.1 One-Boson Exchange Potentials in 25 (7)
Configuration Space
3.2 One-Boson Exchange Potentials in 32 (7)
Momentum Space
4 The Relativistic Mean-Field Approximation 39 (36)
for Nuclear Structure
4.1 General Characteristics of the 39 (9)
Relativistic Framework
4.1.1 Large Scalar and Vector Fields 39 (1)
4.1.2 Spin-Orbit Force 40 (1)
4.1.3 Saturation 40 (8)
4.2 Relativistic Mean-Field Approximation 48 (4)
for Finite Nuclei
4.3 Relation of the RMF Model to the 52 (10)
Skyrme-Hartree-Fock Approach
4.4 Renormalization of the Kinetic Energy 62 (2)
to Obtain Saturation in Nuclear Matter
4.5 Relativistic Mean-Field Approximation 64 (3)
for Deformed Nuclei
4.6 Optimal Parameter Sets for the 67 (8)
Relativistic Mean-Field Model
5 Electromagnetic Interactions of Nucleons in 75 (14)
the Relativistic Framework
5.1 The Vector Dominance Model and the 75 (7)
Nuclear Coulomb Potential
5.1.1 Results of Calculations 80 (2)
5.2 Nuclear Magnetic Moments in the 82 (7)
Relativistic Approach
6 The Relativistic Approach to 89 (10)
Nucleon-Nucleus Scattering
6.1 Energy Dependence of the Real Part of 89 (3)
the Optical Potential
6.2 Coulomb-Nuclear Interference Effects 92 (2)
in Nucleon-Nucleus Scattering
6.3 Relativistic Impulse Approximation 94 (2)
6.4 p-Nucleus Scattering 96 (3)
7 Pion Dynamics and Chiral Symmetry 99 (38)
7.1 Pionic Excitations in Nuclear Matter 99 (2)
7.2 Equations of Motion for a Pion Field 101(3)
in a Nuclear Medium
7.3 Pionic Polarization in Infinite 104(3)
Nuclear Matter
7.4 Contribution of the Δ33 107(6)
Resonance to the Pion Polarization
Operator
7.5 Basic Equations of the Linear σ 113(9)
and σ-ω Models
7.6 Chiral σ-ω Model for 122(3)
Finite Nuclei
7.7 Effective Gauge-Invariant Nuclear 125(5)
Lagrangian
7.8 Mean-Field Results for Nuclear Matter 130(7)
and Finite Nuclei
8 The Relativistic Hartree-Fock Approach 137(36)
8.1 The Relativistic Hartree-Fock 137(4)
Lagrangian
8.2 The Relativistic Hartree-Fock 141(5)
Approach for Symmetric Nuclear Matter
8.3 The Relativistic Hartree-Fock 146(2)
Approach for Finite Nuclei
8.4 Determination of Parameters and 148(6)
Numerical Results
8.5 The Relativistic Hartree-Fock 154(6)
Approach with Meson Self-Coupling Terms
8.6 Spin-Orbit Interaction 160(5)
8.7 Pseudospin as a Relativistic Symmetry 165(8)
9 Brueckner-Hartree-Fock Methods for Nuclear 173(28)
Matter and Finite Nuclei
9.1 The Brueckner-Hartree-Fock Approach 173(2)
9.2 The Brueckner-Bethe-Goldstone Method 175(7)
for Internucleon Correlations
9.3 Δ-Isobar for Nuclear 182(5)
Interactions and Nuclear Structure
9.4 Relativistic Extension of the BHF 187(7)
Theory for Nuclear Matter
9.5 Finite Nuclei 194(7)
10 Excited Nuclear States in the Relativistic 201(18)
RPA Method
10.1 RRPA Method for Nuclear Matter and 201(2)
Finite Nuclei
10.2 RRPA with Nonlinear Interactions for 203(3)
Giant Resonances
10.3 Construction of the Meson Propagators 206(2)
10.4 Results for Collective States and 208(8)
Giant Resonances
10.5 Cranked Relativistic Mean-Field Theory 216(3)
11 The Equation of State of Nuclear Matter for 219(20)
Supernovas and Neutron Stars
11.1 Thomas-Fermi Method for Nonuniform 219(4)
Matter
11.2 Equation of State of Nuclear Matter 223(9)
11.3 Neutron Star Matter and Neutron Star 232(7)
Profiles
12 Alternative Relativistic Models 239(22)
12.1 Quark-Meson Coupling Models 239(7)
12.2 The Relativistic Point-Coupling Model 246(7)
12.3 Scalar Derivative Coupling Models 253(8)
13 Some Recent Applications of Relativistic 261(28)
Nuclear Theory
13.1 Mean Fields in Colliding Nuclear Matter 261(2)
13.2 Hartree-Fock-Bogoliubov Approximation 263(3)
13.3 Spin-Orbit Splitting for 266(1)
Single-Particle and Single-Hole Energies
13.4 The Anomalous Kink in the Isotope 267(1)
Shifts of Pb Nuclei
13.5 Electroweak Interactions in Nuclei in 268(2)
the Relativistic Framework
13.6 Hypernuclei in the Relativistic 270(1)
Framework
13.7 Theoretical Analysis of A(e, e'p)B 271(1)
Reactions
13.8 Exclusive Pion Production in 272(2)
Nucleon-Nucleus Scattering
13.9 The Role of Relativity in Few-Body 274(2)
Systems
13.10 Systematic Study of Even-Even Nuclei 276(3)
up to the Drip Lines
13.11 Exotic Nuclei and Superheavy Nuclei 279(2)
13.12 Dilepton Production by Bremsstrahlung 281(1)
of Meson Fields in Nuclear Collisions
13.13 (p, n) Spin Experiments and 282(2)
Relativity in Nuclear Physics
13.14 Role of Currents (ω and ρ 284(1)
Fields)
13.15 Fission Barriers 285(1)
13.16 Chiral Dynamics and Saturation of 286(3)
Nuclear Structure
14 Summary and Outlook 289(4)
A Appendices 293(30)
A.1 Four-Dimensional Notation and the Dirac 293(3)
Matrices
A.2 Properties of the Ground State of 296(1)
Nuclear Matter in the Walecka Model
A.3 General Form of Local Dirac Equation 297(2)
A.4 Equivalent Local Dirac Nuclear Models 299(1)
A.5 Nucleon Effective Mass in the Nuclear 300(2)
Medium
A.6 Radial Equations for the Upper and 302(2)
Lower Components G(r) and F(r)
A.7 Boundary Conditions for Wave Functions 304(1)
and Meson Potentials
A.8 Generalized Weinberg Transformation 305(1)
A.9 Expansions of the Vertex Functions for 306(1)
Various Mesons
A.10 Globally Chirally Invariant Lagrangian 307(2)
for the Model with an Axial Meson
A.11 Direct and Exchange Matrix Elements 309(9)
for the Two-Body Spin-Orbit Force
A.12 Hartree-Fock Procedure for the 318(5)
Point-Coupling Model
References 323(24)
Index 347