Combustion of Two-Phase Reactive Media (Heat and Mass Transfer) (2004. 570 p.)

個数:

Combustion of Two-Phase Reactive Media (Heat and Mass Transfer) (2004. 570 p.)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    各国での新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。
    弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。

  • 製本 Hardcover:ハードカバー版/ページ数 570 p.
  • 商品コード 9783540403395

Full Description


Combustion of Two-Phase Reactive Media addresses the complex phenomena involved in the burning of solid and liquid fuels. In fact, the multiplicity of phenomena characteristic of combustion of two-phase media determine the contents. The three parts deal with: the dynamics of a single particle; combustion wave propagation in two-phase reactive media; and thermal regimes of combustion reactors. The book generalizes the results of numerous investigations into the ignition and combustion of solid particles, droplets and bubbles, combustion wave propagation in heterogeneous reactive media, the stability of combustion of two-phase media, as well as the thermal regimes of high-temperature combustion reactors. It merges findings from the authors' investigations into problems of two-phase flows and material from graduate-level courses they teach at Technion-Israel Institute of Technology.

Table of Contents

Preface                                            v
Acknowledgements vii
Introduction xiii
0.1 General overview xiii
0.2 Scope and Contents of Part 1 xiv
0.3 Contents of Part 2 xv
0.4 Contents of Part 3 xv
1 Dynamics of a single particle 1 (298)
1.1 Drag of solid particles, droplets and 1 (50)
bubbles
1.1.1 Basic relations 1 (25)
1.1.2 Effect of vaporization 26 (11)
1.1.3 Effect of combustion 37 (8)
References 45 (6)
1.2 Heat and mass transfer 51 (82)
1.2.1 Heat and mass transfer 51 (33)
coefficients
1.2.2 Particle heating 84 (19)
1.2.3 Devolatilization 103 (14)
1.2.4 Droplet evaporation 117 (9)
References 126 (7)
1.3 Ignition and combustion of a single 133 (64)
particle
1.3.1 Ignition of a coal particle 133 (14)
1.3.2 Droplet ignition 147 (15)
1.3.3 Bubble ignition 162 (5)
1.3.4 Ignition of metal particles 167 (5)
1.3.5 Coke particle combustion 172 (8)
1.3.6 Droplet combustion 180 (10)
References 190 (7)
1.4 Collective effects 197 (24)
1.4.1 Introduction 197 (2)
1.4.2 Hydrodynamic interaction 199 (14)
1.4.3 Mass transfer 213 (1)
1.4.4 Interaction of burning particles 214 (4)
References 218 (3)
1.5 Particle-turbulence interaction 221 (78)
1.5.1 Models of interaction 221 (2)
1.5.2 The effect of particle-size 223 (18)
distribution on the turbulence of the
carrier fluid
1.5.3 Turbulence modulation 241 (24)
1.5.4 Temperature fluctuations in 265 (17)
particle-laden flows
1.5.5 Effect of turbulence on chemical 282 (12)
reaction rate
References 294 (5)
2 Combustion wave propagation 299 (146)
2.6 Combustion waves in two-phase media 299 (30)
2.6.1 Preamble 299 (8)
2.6.2 Thermal structure of combustion 307 (8)
waves in gas-particle mixtures
2.6.3 Stationary combustion waves in 315 (7)
two-phase media
2.6.4 Nonstationary combustion wave 322 (4)
propagation
References 326 (3)
2.7 Combustion wave propagation in bubbly 329 (38)
media
2.7.1 Process mechanism 329 (2)
2.7.2 Combustion waves in bubble 331 (5)
suspensions
2.7.3 The thermal structure of a 336 (5)
combustion wave
2.7.4 Speed of the combustion wave 341 (7)
2.7.5 Inductional ignition and site 348 (1)
ignition
2.7.6 Effect of bubble expansion 349 (14)
2.7.7 Combustion waves in media with a 363 (2)
high volumetric content of gaseous phase
References 365 (2)
2.8 Filtration combustion 367 (58)
2.8.1 Definition, method and a process 367 (15)
analysis
2.8.2 Heterogeneous model of combustion 382 (17)
of porous media
2.8.3 Stability of filtration combustion 399 (21)
References 420 (5)
2.9 Turbulent heterogeneous flames 425 (20)
2.9.1 General characteristics 425 (1)
2.9.2 Aerodynamics of two-phase jets 426 (6)
2.9.3 Turbulent coal dust flames 432 (6)
2.9.4 Turbulent flames in liquid fuel 438 (5)
sprays
References 443 (2)
3 High temperature combustion reactor 445 (86)
3.10 Ideally stirred combustion reactor 445 (50)
3.10.1 Preliminary comments 445 (2)
3.10.2 Gas-liquid reactor model 447 (11)
3.10.3 Gas-droplet reactor regimes 458 (7)
3.10.4 Bubbly combustion reactor 465 (13)
3.10.5 Jet gas-liquid reactor 478 (8)
3.10.6 Gas-solid particle reactor 486 (6)
References 492 (3)
3.11 Displacement reactor 495 (1)
3.11.1 The kinematic balance method 495 (4)
3.11.2 Bubble displacement reactor 499 (11)
3.11.3 Filtration combustion reactor 510 (19)
References 529 (2)
Nomenclature 531 (12)
Subject Index 543 (6)
Author Index 549

354040340.TOC354040340X



1 Development of Wind Turbines 1 (4)

2 Wind Turbine Generator Systems 5 (14)

3 Power Quality Standards and Requirements 19 (8)

4 WTGS Operation in Power Systems 27

4.1 Introduction 27 (1)

4.2 WTGS Location in the Electric Power System 28 (4)

4.3 Voltage Variation 32 (10)

4.4 Flicker 42 (7)

4.5 Harmonics 49 (1)

4.6 Short-Circuit Currents 50 (17)

4.7 Real Power Losses 67

5 Mathematical Modeling of WTGS Components 13 (174)

5.1 Introduction 73 (2)

5.2 Wind Turbine Modeling 75 (19)

5.2.1 Wind Stream Power 75 (1)

5.2.2 Mechanical Power Extracted from the Wind 76 (5)

5.2.3 Blade Pitching System 81 (2)

5.2.4 Fixed Rotor Blade System 83 (1)

5 2 5 Wind Wheel Dynamics 84 (1)

5.2.6 Mechanical Eigenswings 85 (2)

5.2.7 Drive Train (Shaft) Model 87 (5)

5.2.8 Wind Turbine Model 92 (2)

5.3 Asynchronous Generator Modeling 94 (10)

5 3 1 Asynchronous Generator Model for 94 (3)

Natural Axes

5.3.2 Asynchronous Generator Model in the Odq 97 (3)

Reference Frame

5.3.3 Asynchronous Generator Model in the 100(4)

αβγ Reference Frame

5.4 Synchronous Generator Modeling 104(9)

5.4.1 Synchronous Generator Model for Natural 104(3)

Axes

5.4.2 Synchronous Generator Model in the Odq 107(5)

Reference Frame

5.4.3 Circuit-Oriented Model of the 112(1)

Synchronous Generator

5.5 Converter Modeling 113(19)

5.5.1 Converter Analysis Techniques 113(3)

5.5.2 Mathematical Functional Model of 116(4)

Converter

5.5.3 Mathematical Physical Model of Converter 120(12)

5.6 Control System Modeling 132(30)

5.6.1 General Idea of Control 133(10)

5.6.2 Supervisory Control 143(5)

5 6 3 Turbine Control 148(3)

5.6.4 Generator Control 151(11)

5.7 Power System Modeling 162(25)

5.7.1 Power System as an Object of Control 162(2)

5.7.2 Power System Model 164(3)

5.7.3 Power System Component Models 167(9)

5.7.4 Power Network Model 176(1)

5.7.5 Radial Power Network Model 177(3)

5.7.6 Meshed Power Network Model 180(7)

6 Models of a WTGS Operating in a Power System 187(62)

6.1 Power Network Model 187(4)

6.2 WTGS with Squirrel-Cage Rotor Asynchronous 191(11)

Generator

6.3 WTGS with Asynchronous Generator and 202(15)

Dynamic Slip Control

6.4 WTGS with Doubly-Fed Asynchronous Generator 217(12)

6.5 WTGS with Synchronous Generator 229(15)

6.5.1 Synchronous Generator with 229(12)

Current-Source Inverter

6.5.2 Synchronous Generator with 241(3)

Voltage-Source Inverter

6.6 Concluding Remarks 244(5)

7 Conclusions 249(2)

References 251(6)

Index 257