Vibrations and Stability : Advanced Theory, Analysis, and Tools (2nd ed. 2004. XII, 404 p.)

個数:

Vibrations and Stability : Advanced Theory, Analysis, and Tools (2nd ed. 2004. XII, 404 p.)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    各国での新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。
    弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。

  • 製本 Hardcover:ハードカバー版/ページ数 404 p.
  • 商品コード 9783540401407

Full Description


An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear phenomena and work with advanced tools such as perturbation analysis and bifurcation analysis. Explaining theory in terms of relevant examples from real systems, this book is user-friendly and meets the increasing interest in non-linear dynamics in mechanical/structural engineering and applied mathematics and physics. This edition includes a new chapter on the useful effects of fast vibrations and many new exercise problems.

Contents

1 Vibration Basics.- 2 Eigenvalue Problems of Vibrations And Stability.- 3 Nonlinear Vibrations: Classical Local Theory.- 4 Nonlinear Multiple-DOF Systems: Local Analysis.- 5 Bifurcations.- 6 Chaotic Vibrations.- 7 Special Effects of High-Frequency Excitation.- Appendix A - Performing Numerical Simulations.- A.1 Solving Differential Equations.- A.2 Computing Chaos-Related Quantities.- A.3 Interfacing with the ODE-Solver.- A.4 Locating Software on the Internet.- Appendix B - Major Exercises.- B.1 Tension Control of Rotating Shafts.- B.1.1 Mathematical Model.- B.1.2 Eigenvalue Problem, Natural Frequencies and Mode Shapes.- B.1.3 Discretisations, Choice of Control Law.- B.1.5 Quantitative Analysis of the Controlled System.- B.1.6 Using a Dither Signal for Open-Loop Control.- B.1.7 Numerical Analysis of the Controlled System.- B.1.8 Conclusions.- B.2 Vibrations of a Spring-Tensioned Beam.- B.2.1 Mathematical Model.- B.2.2 Eigenvalue Problem, Natural Frequencies and Mode Shapes.- B.2.3 Discrete Models.- B.2.4 Local Bifurcation Analysis for the Unloaded System.- B.2.5 Quantitative Analysis of the Loaded System.- B.2.6 Numerical Analysis.- B.2.7 Conclusions.- B.3 Dynamics of a Microbeam.- B.3.1 System Description.- B.3.2 Mathematical Model.- B.3.3 Eigenvalue Problem, Natural Frequencies and Mode Shapes.- B.3.4 Discrete Models, Mode Shape Expansion.- B.3.5 Local Bifurcation Analysis for the Statically Loaded System.- B.3.6 Quantitative Analysis of the Loaded System.- B.3.7 Numerical Analysis.- B.3.8 Conclusions.- Appendix C - Mathematical Formulas.- C.1 Formulas Typically Used in Perturbation analysis.- C.1.1 Complex Numbers.- C.1.2 Powers of Two-Term Sums.- C.1.3 Dirac's Delta Function (?).- C.1.4 Averaging Integrals.- C.1.5 Fourier Series of a Periodic Function.- C.2 Formulas for Stability Analysis.- C.2.1 The Routh-Hurwitz Criterion.- C.2.2 Mathieu's Equation:Stability of the Zero-Solution.- Appendix D - Vibration Modes and Frequencies for Structural Elements.- D.1 Rods.- D.1.1 Longitudinal Vibrations.- D.1.2 Torsional Vibrations.- D.2 Beams.- D.2.1 Bernoulli-Euler Theory.- D.2.2 Timoshenko Theory.- D.3 Rings.- D.3.1 In-Plane Bending.- D.3.2 Out-of-Plane Bending.- D.3.3 Extension.- D.4 Membranes.- D.4.1 Rectangular Membrane.- D.4.2 Circular Membrane.- D.5 Plates.- D.5.1 Rectangular Plate.- D.5.2 Circular Plate.- D.6 Other Structures.- Appendix E - Properties of Engineering Materials.- E.1 Friction and Thermal Expansion Coefficients.- E.2 Density and Elasticity Constants.- References.