Computational Methods in Commutative Algebra and Algebraic Geometry (Algorithms and Computation in Mathematics Vol.2) (2nd corr. pr., 3rd pr. 2004. XIII, 408 p. w. 11 figs. 23,5 cm)

個数:

Computational Methods in Commutative Algebra and Algebraic Geometry (Algorithms and Computation in Mathematics Vol.2) (2nd corr. pr., 3rd pr. 2004. XIII, 408 p. w. 11 figs. 23,5 cm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 400 p.
  • 商品コード 9783540213116

基本説明

New in softcover. Hardcover was published in 1997. Deals with tackling problems that can be represented by data structures which are essentially matrices with polynomial entries, mediated by the disciplines of commutative algebra and algebraic geometry.

Full Description

From the reviews:

"... Many parts of the book can be read by anyone with a basic abstract algebra course... it was one of the author's intentions to equip students who are interested in computational problems with the necessary algebraic background in pure mathematics and to encourage them to do further research in commutative algebra and algebraic geometry. But researchers will also benefit from this exposition. They will find an up-to-date description of the related research ... The reviewer recommends the book to anybody who is interested in commutative algebra and algebraic geometry and its computational aspects."

Math. Reviews 2002

"... a sophisticated notebook, with plenty of suggestions, examples and cross references ... It is a welcome new and deep exploration into commutative algebra and its relations with algebraic geometry. It is full of results, from simple tricks to more elaborate constructions, all having in common a computational and constructive nature..."

Jahresberichte der DMV 1999

Contents

1 Fundamental Algorithms.- 1.1 Gröbner Basics.- 1.2 Division Algorithms.- 1.3 Computation of Syzygies.- 1.4 Hilbert Functions.- 1.5 Computer Algebra Systems.- 2 Toolkit.- 2.1 Elimination Techniques.- 2.2 Rings of Endomorphisms.- 2.3 Noether Normalization.- 2.4 Fitting Ideals.- 2.5 Finite and Quasi—Finite Morphisms.- 2.6 Flat Morphisms.- 2.7 Cohen—Macaulay Algebras.- 3 Principles of Primary Decomposition.- 3.1 Associated Primes and Irreducible Decomposition.- 3.2 Equidimensional Decomposition of an Ideal.- 3.3 Equidimensional Decomposition Without Exts.- 3.4 Mixed Primary Decomposition.- 3.5 Elements of Factorizers.- 4 Computing in Artin Algebras.- 4.1 Structure of Artin Algebras.- 4.2 Zero-Dimensional Ideals.- 4.3 Idempotents versus Primary Decomposition.- 4.4 Decomposition via Sampling.- 4.5 Root Finders.- 5 Nullstellensätze.- 5.1 Radicals via Elimination.- 5.2 Modules of Differentials and Jacobian Ideals.- 5.3 Generic Socles.- 5.4 Explicit Nullstellensätze.- 5.5 Finding Regular Sequences.- 5.6 Top Radical and Upper Jacobians.- 6 Integral Closure.- 6.1 Integrally Closed Rings.- 6.2 Multiplication Rings.- 6.3 S2-ification of an Affine Ring.- 6.4 Desingularization in Codimension One.- 6.5 Discriminants and Multipliers.- 6.6 Integral Closure of an Ideal.- 6.7 Integral Closure of a Morphism.- 7 Ideal Transforms and Rings of Invariants.- 7.1 Divisorial Properties of Ideal Transforms.- 7.2 Equations of Blowup Algebras.- 7.3 Subrings.- 7.4 Rings of Invariants.- 8 Computation of Cohomology.- 8.1 Eyeballing.- 8.2 Local Duality.- 8.3 Approximation.- 9 Degrees of Complexity of a Graded Module.- 9.1 Degrees of Modules.- 9.2 Index of Nilpotency.- 9.3 Qualitative Aspects of Noether Normalization.- 9.4 Homological Degrees of a Module.- 9.5 Complexity Bounds in Local Rings.- AA Primer on Commutative Algebra.- A.1 Noetherian Rings.- A.2 Krull Dimension.- A.3 Graded Algebras.- A.4 Integral Extensions.- A.5 Finitely Generated Algebras over Fields.- A.6 The Method of Syzygies.- A.7 Cohen-Macaulay Rings and Modules.- A.8 Local Cohomology.- A.9 Linkage Theory.- B Hilbert Functions.- G-Graded Rings and G-Filtrations.- B.2 The Study ofRvia grF(R).- B.3 The Hilbert—Samuel Function.- B.4 Hilbert Functions, Resolutions and Local Cohomology.- B.5 Lexsegment Ideals and Macaulay Theorem.- B.6 The Theorems of Green and Gotzmann.- C Using Macaulay 2.- C.1 Elementary Uses of Macaulay 2.- C.2 Local Cohomology of Graded Modules.- C.3 Cohomology of a Coherent Sheaf.- References.

最近チェックした商品