Plant Responses to Abiotic Stress (Topics in Current Genetics Vol.4) (2004. 300 p. w. 31 figs.)

個数:
  • ポイントキャンペーン

Plant Responses to Abiotic Stress (Topics in Current Genetics Vol.4) (2004. 300 p. w. 31 figs.)

  • ウェブストア価格 ¥63,555(本体¥57,778)
  • SPRINGER, BERLIN(2004発売)
  • 外貨定価 EUR 320.99
  • ウェブストア限定 全点ポイント5倍キャンペーン(6/24~6/28)
  • ポイント 2,885pt
  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • ウェブストア価格 ¥64,235(本体¥58,396)
  • SPRINGER, BERLIN(2004発売)
  • 外貨定価 US$ 379.99
  • ウェブストア限定 全点ポイント5倍キャンペーン(6/24~6/28)
  • ポイント 2,915pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    ウクライナ情勢悪化・新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。詳しくはこちらをご確認ください。
    海外からのお取り寄せの場合、弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • 製本 Hardcover:ハードカバー版/ページ数 300 p.
  • 商品コード 9783540200376

Description


(Text)

Environmental stresses represent the most limiting factors for agricultural productivity. Apart from biotic stress caused by plant pathogens, there are a number of abiotic stresses such as extremes in temperature, drought, salinity, heavy metals and radiation which all have detrimental effects on plant growth and yield. However, certain plant species and ecotypes have
(Table of content)
Introduction.
- Molecular Responses of Higher Plants to Dehydration.
- Abscisic Acid Signalling.
- Plant Responses to Heat Stress.
- Sensors of Abiotic Stress in Synechocystis.
- Oxidative Stress Signalling.
- Signal Transduction in Plant Cold Acclimation.
- Heavy Metal Signalling in Plants: Linking Cellular and Organismic Responses.
- Molecular Genetics of Genotoxic Stress Signalling in Plants.
- Plant Salt Tolerance.
- Transcriptome Analysis in Abiotic Stress Conditions in Higher Plants.

Table of Contents

Introduction                                       1  (270)
Heribert Hirt 1 (8)
Water stress 2 (1)
Salt stress 2 (1)
Low temperature stress 3 (1)
ABA as abiotic stress signalling hormone 4 (1)
Heat stress 4 (1)
Oxidative stress 5 (1)
Heavy metal stress 6 (1)
Genotoxic stress 6 (1)
Stress transcriptome analysis 7 (1)
Stress sensors in the model organism 8 (1)
Synechocystis
1 Molecular responses of higher plants to 9 (30)
dehydration
Dorothea Bartels and Erik Souer 9 (30)
Abstract 9 (1)
1.1 Introduction 9 (1)
1.2 Plant species and experimental 10 (1)
systems used in molecular studies
1.3 Abscisic acid (ABA) 11 (2)
1.4 The perception of water stress 13 (6)
1.4.1 Histidine kinases 13 (1)
1.4.2 The role of kinases and 14 (2)
phosphatases in the response to water
deficit
1.4.2 Calcium signalling 16 (1)
1.4.3 Heterotrimeric G-proteins 17 (1)
1.4.4 Phospholipid signalling 17 (2)
1.5 Transcriptional control 19 (7)
1.5.1 The ABA responsive element 22 (1)
1.5.2 The dehydration-responsive element 22 (1)
1.5.3 The SAP domain 23 (1)
1.5.4 Myb and helix-loop-helix domains 24 (1)
1.5.5 Homeodomain proteins 25 (1)
1.5.6 An RNA as a signalling molecule? 25 (1)
1.5.7 Positioning of signals in the 26 (1)
network
1.6 Dehydration-activated proteins 26 (2)
1.6.1 The accumulation of compatible 26 (1)
solutes
1.6.2 Genes that encode proteins with 27 (1)
protective functions
1.6.3 Reactive oxygen intermediates 28 (1)
1.7 Conclusions and outlook 28 (2)
Acknowledgements 30 (1)
References 30 (7)
Abbreviations 37 (2)
2 Abscisic acid signalling 39 (34)
Alexander Christmann, Erwin Grill and 39 (34)
Michael Meinhard
Abstract 39 (1)
2.1 Introduction 39 (1)
2.2 Systems used to study ABA signal 40 (1)
transduction
2.3 ABA biosynthesis 41 (3)
2.3.1 Reactions generating substrates 43 (1)
for NCED
2.3.2 NCED-catalyzed cleavage reaction 43 (1)
2.3.3 Formation of ABA from xanthoxirt 43 (1)
2.3.4 Feedback regulation of ABA 44 (1)
biosynthesis
2.4. signalling components 44 (13)
2.4.1 ABA- Receptor 44 (1)
2.4.2 Intracellular messengers 45 (4)
2.4.3 0-proteins 49 (1)
2.4.4 Famesyltransferase ERA1 50 (1)
2.4.5 Protein phosphatases 50 (3)
2.4.6 Protein kinases 53 (1)
2.4.7 Transcriptional regulators 54 (3)
2.5 RNA and protein turnover during ABA 57 (1)
response
2.6 Cross-talk 58 (1)
Acknowledgements 58 (1)
References 58 (15)
3 Plant responses to heat stress 73 (30)
Priti Krishna 73 (30)
Abstract 73 (1)
3.1 Introduction 73 (1)
3.2 Major families of heat shock proteins 74 (5)
3.2.1 Hsp100 74 (1)
3.2.2 Hsp90 75 (1)
3.2.3 Hsp70 76 (1)
3.2.4 Small hsps 77 (1)
3.2.5 The Chaperonins 78 (1)
3.3 Transcriptional regulation of hsps 79 (8)
3.3.1 Structure of plant Hsfs 80 (1)
3.3.2 Regulation of plant Hsfs 80 (7)
3.4 Ca2+ and heat shock response 87 (1)
3.5 Hormones and heat stress response 88 (2)
3.6 Relationship between heat and other 90 (1)
stresses
3.7 Developmental regulation of shsps by 91 (1)
Hsfs
3.8 Future directions 92 (1)
Acknowledgements 93 (1)
References 93 (10)
4 Sensors of abiotic stress in systechocystis 103(18)
Koji Mikami, Iwane Suzuki and Norio Murata 103(18)
Abstract 103(1)
4.1 Introduction 103(1)
4.2 Hik33 as a cold sensor 104(2)
4.3 Hik33 as a sensor of hyperosmotic 106(1)
stress
4.4 Perception of multiple stresses by 106(2)
Hik33
4.5 Hik16, Hik33, and Hik34 as salt 108(1)
sensors
4.6 Hik7 and Rre29 as the sensor and 108(1)
signal transducer of a phosphate deficit
4.7 Sensors of metal ions 109(3)
4.7.1 Hik27 and Rre16 as the sensor and 110(2)
signal transducer of manganese
deficiency
4.7.2 Hik30 and Rre33 as the sensor and 112(1)
signal transducer of an excess of Ni2+
ions
4.8 Comparative analysis of histidine 112(1)
kinases (Hiks) in cyanobacteria
4.9 Future perspectives 113(1)
Acknowledgements 114(1)
References 114(7)
5 Oxidative stress signalling 121(30)
Radhika Desikan, John T. Hancock and Steven 121(30)
J. Neill
Abstract 121(1)
5.1 Introduction 121(1)
5.2 Reactive oxygen species (ROS) 122(2)
5.3 Redox balance and the generation and 124(6)
removal of ROS
5.3.1 Redox balance 124(1)
5.3.2 ROS generation 124(4)
5.3.3 Removal of ROS 128(2)
5.4 Cellular responses 130(7)
5.4.1 Effects on gene expression 130(4)
5.4.2 Signalling 134(3)
5.5 H2O2 biology 137(4)
5.5.2 H2O2 and stomata 139(1)
5.5.3 H2O2 and roots 140(1)
5.5.4 Anoxia and H2O2 140(1)
5.6 Conclusions 141(1)
References 141(7)
Abbreviations 148(3)
6 Signal transduction in plant cold 151(36)
acclimation
Pekka Heino and E. Tapio Palva 151(36)
Abstract 151(1)
6.1 Introduction 151(5)
6.1.1 Low temperature stress 151(1)
6.1.2 Cold acclimation 152(3)
6.1.3 Molecular dissection of cold 155(1)
acclimation
6.2 Signal perception and low temperature 156(2)
sensing
6.2.1 Perception of cold 156(1)
6.2.2 Membrane rigidification 157(1)
6.3 Role of Cat in cold acclimation 158(4)
6.4 Protein phosphorylation 162(3)
6.4.1 Protein kinases 162(2)
6.4.2 Protein phosphatases 164(1)
6.5 Regulation of gene expression in 165(10)
response to low temperature
6.5.1 Gene expression in response to 165(1)
cold
6.5.2 CRT/DRE/LTRE regulated gene 166(3)
expression
6.5.3 ABRE mediated gene expression 169(1)
6.5.4 Regulation of transcription 170(3)
factors
6.5.5 Post-transcriptional regulation 173(2)
of gene expression
6.6 Conclusions 175(1)
Acknowledgements 176(1)
References 176(11)
7 Heavy metal signalling in plants: linking 187(30)
cellular and organismic responses
Andrea Polle and Andres Sch zendiibel 187(30)
Abstract 187(1)
7.1 Introduction 187(2)
7.2 Chemical properties, toxicity, and 189(4)
stress signalling of heavy metals with
contrasting functions in plants
7.2.1 Copper 189(1)
7.2.2 Cadmium 190(3)
7.3 Uptake and sensing of heavy metals: 193(6)
regulation of metal homeostasis
7.3.1 Extracellular cellular processes 193(2)
and biotrophic interactions
7.3.2 Cellular signalling of copper - 195(3)
means to maintain homeostasis
7.3.3 Cellular signalling of cadmium 198(1)
7.4 Stress signals triggering plant 199(5)
growth and development at the organismic
level
7.4.1 Links between cellular heavy 199(3)
metal signalling and inhibition of root
growth
7.4.2 Long distance signalling and 202(2)
shoot responses to heavy metals
7.5 Conclusions and implication for 204(1)
future research
Acknowledgements 205(1)
References 205(12)
8 Molecular genetics of genotoxic stress 217(24)
signalling in plants
Roman Ulm 217(24)
Abstract 217(1)
8.1 Introduction 217(1)
8.2 What is genotoxic stress? 218(3)
8.3 Genotoxic stress signalling 221(11)
8.3.1 From inside the nucleus 221(4)
8.3.2 From the cell periphery 225(5)
8.3.3 Transcriptional response to 230(1)
genotoxic stress in plants
8.3.4 UV-B signalling 231(1)
8.4 Rapid genomic change in plants? 232(1)
8.5 Conclusions 233(1)
Acknowledgements 233(1)
References 233(6)
Abbreviations 239(2)
9 Plant salt tolerance 241(30)
Viswanathan Chinnusamy and Jian-Kang Zhu 241(30)
Abstract 241(1)
9.1 Introduction 241(1)
9.2 Sodium entry into plant cells 242(1)
9.3 Input signals of salt stress 243(9)
9.3.1 Calcium signalling 244(2)
9.3.2 Calcium sensors 246(2)
9.3.3 Hybrid two-component receptor 248(2)
kinases
9.3.4 MAPK pathway 250(2)
9.4 ABA-mediated salt stress signaling 252(1)
9.5 The SOS signaling pathway of ion 253(2)
homeostasis
9.6 Osmotic stress management 255(2)
9.6.1 Sodium sequestration into the 256(1)
vacuole
9.6.2 K+ Uptake 256(1)
9.63 Osmoprotectant biosynthesis 257(1)
9.7 Stress damage control and repair 258(1)
9.7.1 Salt stress induced proteins 258(1)
9.8 Oxidative stress management 259(1)
9.9 Growth regulation 260(1)
9.10 Conclusions and perspectives 261(1)
Acknowledgements 261(1)
References 261(10)
10 Transcriptome analysis in abiotic stress 271(26)
conditions in higher plants
Motoaki Seki, Ayako Kamei, Masakazu Satou, 271(26)
Tetsuya Sakurai, Miki Fujita, Youko Oono,
Kazuko Yamaguchi-Shinozaki and Kazuo
Shinozaki
Abstract 271(1)
10.1 Introduction 271(1)
10.2 Cis- and trans-acting factors 272(1)
involved in regulation of gene expression
by drought, high-salinity and cold stress
10.2.1 Application of cDNA microarray 273(1)
analysis to expression profiling under
abiotic stress conditions
10.3 Collection and functional annotation 273(4)
of RIKEN Arabidopsis full-length (RAFL)
cDNAs
10.3.1 Application of RIKEN Arabidopsis 274(3)
full-length (RAFL) cDNA microarray to
identify drought-, cold-, or
high-salinity-stress regulated genes
10.4 Stress-inducible genes and functions 277(8)
of their gene products identified by RAFL
cDNA microarray
10.4.1 Cold-inducible genes and 281(2)
stress-downregulated genes identified
using RAFL cDNA microarray
10.4.2 Application of RAFL cDNA 283(2)
microarray to study the expression
profiles under abiotic stress conditions
10.5 Application of Arabidopsis GeneChip 285(2)
to study the expression profiles under
abiotic stress conditions
10.6 Abiotic stress-inducible genes 287(1)
identified using microarrays in monocots
10.7 Conclusions and perspectives 287(2)
Acknowledgements 289(1)
References 289(5)
Abbreviations 294(3)
Index 297