Spectral Theory of Ordinary Differential Operators (Lecture Notes in Mathematics, Volume 1258) (2008. 312 S. 235 mm)

個数:

Spectral Theory of Ordinary Differential Operators (Lecture Notes in Mathematics, Volume 1258) (2008. 312 S. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783540179023

Full Description

These notes will be useful and of interest to mathematicians and physicists active in research as well as for students with some knowledge of the abstract theory of operators in Hilbert spaces. They give a complete spectral theory for ordinary differential expressions of arbitrary order n operating on -valued functions existence and construction of self-adjoint realizations via boundary conditions, determination and study of general properties of the resolvent, spectral representation and spectral resolution. Special attention is paid to the question of separated boundary conditions, spectral multiplicity and absolutely continuous spectrum. For the case nm=2 (Sturm-Liouville operators and Dirac systems) the classical theory of Weyl-Titchmarch is included. Oscillation theory for Sturm-Liouville operators and Dirac systems is developed and applied to the study of the essential and absolutely continuous spectrum. The results are illustrated by the explicit solution of a number of particular problems including the spectral theory one partical Schrödinger and Dirac operators with spherically symmetric potentials. The methods of proof are functionally analytic wherever possible.

Contents

Formally self-adjoint differential expressions.- Appendix to section 1: The separation of the Dirac operator.- Fundamental properties and general assumptions.- Appendix to section 2: Proof of the Lagrange identity for n>2.- The minimal operator and the maximal operator.- Deficiency indices and self-adjoint extensions of T0.- The solutions of the inhomogeneous differential equation (?-?)u=f; Weyl's alternative.- Limit point-limit circle criteria.- Appendix to section 6: Semi-boundedness of Sturm-Liouville type operators.- The resolvents of self-adjoint extensions of T0.- The spectral representation of self-adjoint extensions of T0.- Computation of the spectral matrix ?.- Special properties of the spectral representation, spectral multiplicities.- L2-solutions and essential spectrum.- Differential operators with periodic coefficients.- Appendix to section 12: Operators with periodic coefficients on the half-line.- Oscillation theory for regular Sturm-Liouville operators.- Oscillation theory for singular Sturm-Liouville operators.- Essential spectrum and absolutely continuous spectrum of Sturm-Liouville operators.- Oscillation theory for Dirac systems, essential spectrum and absolutely continuous spectrum.- Some explicitly solvable problems.

最近チェックした商品