Fuzzy Probabilities and Fuzzy Sets for Web Planning (Studies in Fuzziness and Soft Computing Vol.135) (2004. X, 190 p.)

個数:

Fuzzy Probabilities and Fuzzy Sets for Web Planning (Studies in Fuzziness and Soft Computing Vol.135) (2004. X, 190 p.)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    各国での新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。
    弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。

  • 製本 Hardcover:ハードカバー版/ページ数 190 p.
  • 商品コード 9783540004738

Full Description


1.1 Introduction This book is written in five major divisions. The first part is the introduc tory chapters consisting of Chapters 1-3. In part two, Chapters 4-10, we use fuzzy probabilities to model a fuzzy queuing system . We switch to employ ing fuzzy arrival rates and fuzzy service rates to model the fuzzy queuing system in part three in Chapters 11 and 12. Optimization models comprise part four in Chapters 13-17. The final part has a brief summary and sug gestions for future research in Chapter 18, and a summary of our numerical methods for calculating fuzzy probabilities, values of objective functions in fuzzy optimization, etc., is in Chapter 19. First we need to be familiar with fuzzy sets. All you need to know about fuzzy sets for this book comprises Chapter 2. Two other items relating to fuzzy sets, needed in Chapters 13-17, are also in Chapter 2: (1) how we plan to handle the maximum/minimum of a fuzzy set; and (2) how we will rank a finite collection of fuzzy numbers from smallest to largest.

Contents

1 Introduction.- 1.1 Introduction.- 1.2 Fuzzy Probabilities.- 1.3 Fuzzy Arrival/Service Rates.- 1.4 Optimization Models.- 1.5 Notation.- 1.6 References.- 2 Fuzzy Sets.- 2.1 Introduction.- 2.2 Fuzzy Sets.- 2.2.1 Fuzzy Numbers.- 2.2.2 Alpha-Cuts.- 2.2.3 Inequalities.- 2.2.4 Discrete Fuzzy Sets.- 2.3 Fuzzy Arithmetic.- 2.3.1 Extension Principle.- 2.3.2 Interval Arithmetic.- 2.3.3 Fuzzy Arithmetic.- 2.4 Fuzzy Functions.- 2.4.1 Extension Principle.- 2.4.2 Alpha-Cuts and Interval Arithmetic.- 2.4.3 Differences.- 2.5 Finding the Min/Max of a Fuzzy Number.- 2.6 Ordering/Ranking Fuzzy Numbers.- 2.7 References.- 3 Fuzzy Probabilities/Arrival Rates.- 3.1 Introduction.- 3.2 Fuzzy Probabilities from Confidence Intervals.- 3.3 Fuzzy Arrival/Service Rates.- 3.3.1 Fuzzy Arrival Rate.- 3.3.2 Fuzzy Service Rate.- 3.4 Fuzzy Numbers from Expert Opinion.- 3.5 Restricted Fuzzy Arithmetic.- 3.5.1 Probabilities.- 3.5.2 Restricted Arithmetic: General.- 3.5.3 Restricted Fuzzy Arithmetic: Book.- 3.6 Computations.- 3.6.1 First Problem.- 3.6.2 Second Problem.- 3.6.3 Another Fuzzy Computation.- 3.7 Figures.- 3.8 References.- 4 Fuzzy Markov Chains.- 4.1 Introduction.- 4.2 Fuzzy Regular Markov Chains.- 4.3 Fuzzy Absorbing Markov Chains.- 4.4 Other Fuzzy Markov Chains.- 4.5 References.- 5 Fuzzy Queuing Theory.- 5.1 Introduction.- 5.2 Queuing Theory.- 5.3 Fuzzy Queuing Theory.- 6 Computations: One Sever.- 6.1 Introduction.- 6.2 Calculations.- 6.3 References.- 7 Example: One Sever.- 7.1 Introduction.- 7.2 Computations.- 7.3 References.- 8 Computations: Two Servers.- 8.1 Introduction.- 8.2 Calculations.- 9 Example: Two Servers.- 9.1 Introduction.- 9.2 Computations.- 9.3 References.- 10 Computations: Three or More Servers.- 10.1 References.- 11 Fuzzy Arrival/Service Rates.- 11.1 Introduction.- 11.2 Fuzzy Steady State Probabilities.- 11.3 Fuzzy System Parameters.- 11.4 References.- 12 Example: Fuzzy Arrival/Service Rates.- 12.1 Introduction.- 12.2 One Server.- 12.3 Two Servers.- 12.4 Three or More Servers.- 12.5 References.- 13 Optimization: Without Revenue/Costs.- 13.1 Introduction.- 13.2 Fuzzy Probabilities.- 13.2.1 Minimize % MathType!MTEF!2!1!+-% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WGsbaaaaaa!36DC!$$\overline R $$.- 13.2.2 Minimize % MathType!MTEF!2!1!+-% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WGsbaaaaaa!36DC!$$\overline R $$ and Maximize % MathType!MTEF!2!1!+-% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WGvbaaaaaa!36DF!$$\overline U $$.- 13.2.3 Ranking the Fuzzy Sets.- 13.3 Fuzzy Arrival/Service Rates.- 13.3.1 Minimize % MathType!MTEF!2!1!+-% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WGsbaaaaaa!36DC!$$\overline R $$.- 13.3.2 Minimize % MathType!MTEF!2!1!+-% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WGsbaaaaaa!36DC!$$\overline R $$ and Maximize % MathType!MTEF!2!1!+-% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WGvbaaaaaa!36DF!$$\overline U $$.- 13.3.3 Ranking the Fuzzy Sets.- 13.4 References.- 14 Optimization: With Revenue/Costs.- 14.1 Introduction.- 14.2 Fuzzy Probabilities.- 14.2.1 Ranking the Fuzzy Sets.- 14.3 Fuzzy Arrival/Service Rates.- 14.3.1 Ranking the Fuzzy Sets.- 14.4 References.- 15 Burstiness.- 15.1 Introduction.- 15.2 Fuzzy Probabilities.- 15.2.1 Ranking the Fuzzy Numbers.- 15.3 Fuzzy Arrival/Service Rates.- 15.3.1 Ranking the Fuzzy Numbers.- 15.4 References.- 16 Long Tailed Distributions.- 16.1 Introduction.- 16.2 Fuzzy Probabilities.- 16.2.1 Ranking the Fuzzy Numbers.- 16.3 Fuzzy Arrival/Service Rates.- 16.3.1 Ranking the Fuzzy Numbers.- 16.4 References.- 17 Putting It All Together.- 17.1 Introduction.- 17.2 Fuzzy Probabilities.- 17.3 Fuzzy Arrival/Service Rates.- 18 Summary and Future Research.- 18.1 Introduction.- 18.2 Fuzzy Probabilities.- 18.3 Fuzzy arrival/Service Rate.- 18.4 Future Research.- 18.4.1 CD-ROM.- 18.4.2 Simulation.- 18.5 References.- 19 Computational Algorithms.- 19.1 Introduction.- 19.2 Computations: Fuzzy Probabilities.- 19.2.1 Premium Solver Problem.- 19.2.2 Genetic Algorithm.- 19.2.3 Optimization Models.- 19.3 Computations: Fuzzy Arrivals and Service Rates.- 19.4 References.- List of Figures.- List of Tables.