Einführung in die reelle Algebra (Vieweg Studium, Aufbaukurs Mathematik 63) (1989. x, 184 S. X, 184 S. Mit Online-Extras. 235 mm)

個数:

Einführung in die reelle Algebra (Vieweg Studium, Aufbaukurs Mathematik 63) (1989. x, 184 S. X, 184 S. Mit Online-Extras. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 194 p.
  • 言語 GER
  • 商品コード 9783528072636
  • DDC分類 600

Full Description

Dieses Buch will dem Leser eine Einfuhrung in wichtige Techniken und Methoden der heutigen reellen Algebra und Geometrie vermitteln. An Voraussetzungen werden dabei nur Grundkenntnisse der Algebra erwartet, so dass das Buch fur Studenten mittlerer Semester geeignet ist.Das erste Kapitel enthalt zunachst grundlegende Fakten uber angeordnete Korper und ihre reellen Abschlusse und behandelt dann verschiedene Methoden zur Bestimmung der Anzahl reeller Nullstellen von Polynomen. Das zweite Kapitel befasst sich mit reellen Stellen und gipfelt in Artins Losung des 17. Hilbertschen Problems. Kapitel III schliesslich ist dem noch jungen Begriff des reellen Spektrums und seinen Anwendungen gewidmet."Neben dem 1987 erschienenen "Geometrie algebrique reelle" von J. Bochnak-M. Coste- M. Roy stellt die vorliegende Monographie das erste Lehrbuch auf diesem Gebiet dar...Damit liegt eine sehr empfehlenswerte Einfuhrung...vor..." (H. Mitsch, Monatshefte fur Mathematik 3/111, 1991)

Contents

I Angeordnete Körper und ihre reellen Abschlüsse.- §1. Anordnungen und Präordnungen von Körpern.- §2. Quadratische Formen, Wittringe, Signaturen.- §3. Fortsetzung von Anordnungen.- §4. Die Primideale des Wittrings.- §5. Reell abgeschlossene Körper und ihre körpertheoretische Charakterisierung.- §6. Galoistheoretische Kennzeichnung der reell abgeschlossenen Körper.- §7. Zählen reeller Nullstellen von Polynomen (ohne Vielfachheiten).- §8. Begriffliche Deutung der Sylvesterform.- §9. Cauchy-Index einer rationalen Funktion, Bézoutiante und Hankelformen.- §10. Eine obere Abschätzung für die Anzahl reeller Nullstellen (mit Vielfachheiten).- §11. Der reelle Abschluß eines angeordneten Körpers.- §12. Verlagerung quadratischer Formen.- II Konvexe Bewertungsringe und reelle Stellen.- §1. Konvexe Teilringe angeordneter Körper.- §2. Bewertungsringe.- §3. Ganze Elemente.- §4. Bewertungen, Ideale von Bewertungsringen.- §5. Restklassenkörper und Teilkörper von konvexen Bewertungsringen.- §6. Die Topologie von angeordneten und bewerteten Körpern.- §7. Der Satz von Baer-Krull.- §8. Reelle Stellen.- §9. Die Anordnungen von R(t),R((t)) und Quot IR {t}.- §10. Komposition und Zerlegung von Stellen.- §11. Existenz von reellen Stellen auf Funktionenkörpern.- §12. Artins Lösung des 17. Hilbertschen Problems und das Zeichenwechsel Kriterium.- III Das reelle Spektrum.- §1. Das Zariski-Spektrum. Affine Varietäten.- §2. Realität in kommutativen Ringen.- §3. Definition des reellen Spektrums.- §4. Konstruierbare Teilmengen und spektrale Räume.- §5. Die geometrische Situation: Semialgebraische Mengen und Filtersätze.- §6. Der Raum der abgeschlossenen Punkte.- §7. Spezialisierungen und konvexe Ideale.- §8. Das reelle Spektrum und der reduzierteWittring eines Körpers.- §9. Präordnungen von Ringen und Positivstellensätze.- §10. Die konvexen Radikalideale zu einer Präordnung.- §11. Beschränktheit.- §12. Prüferringe und reeller Holomorphiering eines Körpers.- Literatur.- Symbolverzeichnis.- Stichwortverzeichnis.

最近チェックした商品