Computational Physics : Numerische Methoden und computergestützte Verfahren mit Python (1. Auflage. 2026. 350 S. 200 SW-Abb. 244 mm)

個数:
  • 予約

Computational Physics : Numerische Methoden und computergestützte Verfahren mit Python (1. Auflage. 2026. 350 S. 200 SW-Abb. 244 mm)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 350 p.
  • 言語 GER
  • 商品コード 9783527414284

Full Description

Das Lehrbuch "Computational Physics" bietet Studierenden einen praxisorientierten Einstieg in die computergestützte Physik

Contents

1 Fehler und Zahlen
1.1 Vorüberlegungen
1.2 Rundungsfehler
1.3 Stabilität iterativer Algorithmen

2 Lösung linearer Gleichungssysteme, Singulärwertzerlegung
2.1 Fall I: lineare Gleichungssysteme mit eindeutiger Lösung
2.2 Fälle I-III: die Singulärwertzerlegung

3 Eigenwerte und Eigenvektoren
3.1 Mathematische Wiederholung
3.2 Jacobi-Rotation
3.3 Diagonalisierung mit Hilfe des Householder-Algorithmus
3.4 Matrixdiagonalisierung in der Quantenmechanik
3.5 Die Potenzmethode und der Lanczos-Algorithmus

4 Differentiation und Integration
4.1 Differentiation
4.2 Einfache eindimensionale Integrale
4.3 Problematische eindimensionale Integrale
4.4 Hauptwertintegrale
4.5 Mehrdimensionale Integrale
4.6 Fourier-Transformationen

5 Numerische Minimierung
5.1 Funktionen von einer Variablen
5.2 Minimierung im Rn: Liniensuchmethoden
5.3 Newton- und Quasi-Newton-Verfahren
5.4 Minimierung unter Nebenbedingungen

6 Lösung nicht-linearer Gleichungssysteme
6.1 N = 1: Gleichungen einer Variablen
6.2 N > 1: Gleichungssysteme mit mehreren Variablen
6.3 Mathematischer Ausflug: Banachscher Fixpunktsatz

7 Systeme gewöhnlicher Differentialgleichungen
7.1 Problemstellung, Euler-Verfahren
7.2 Runge-Kutta-Verfahren
7.3 Mehr-Schritt-Verfahren
7.4 Steife Differentialgleichungen

8 Partielle Differentialgleichungen
8.1 Einleitung
8.2 Die Poisson-Gleichung
8.3 Anfangswertprobleme

9 Zufallszahlen, Random walks
9.1 Zufallszahlen
9.2 Anwendung: Random walks

10 Klassische Molekulardynamik
10.1 Einleitung
10.2 Messung von Observablen
10.3 Kanonische Molekulardynamik-Simulationen

11 Klassische Monte-Carlo Verfahren
11.1 Integrale, importance sampling
11.2 Das Ising-Modell
11.3 Monte-Carlo Simulationen kontinuierlicher Systeme
11.4 Lösung der Boltzmann-Gleichung
11.5 Optimierung: Das Problem des Handlungsreisenden

12 Gleichgewichts-Mean-Field-Näherungen
12.1 Das Bogoliubov-Variationsprinzip
12.2 Zum Heisenbergmodell mit Spin 1

13 Zeitentwicklung quantenmechanischer Systeme
13.1 Exakte Zeitentwicklung
13.2 Die Magnus-Entwicklung
13.3 Zeitabhängige Variationsnäherung
13.4 Zeitabhängige Hartree-Fock Näherung für Fermionen

14 Grundlagen des Machine Learning

最近チェックした商品