数理物理学入門(テキスト)<br>A first Course in Mathematical Physics (1. Aufl. 2016. 336 S. 3 SW-Abb., 62 Farbabb. 244 mm)

個数:
電子版価格
¥6,955
  • 電子版あり

数理物理学入門(テキスト)
A first Course in Mathematical Physics (1. Aufl. 2016. 336 S. 3 SW-Abb., 62 Farbabb. 244 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783527413331

Full Description

The book assumes next to no prior knowledge of the topic. The first part introduces the core mathematics, always in conjunction with the physical context. In the second part of the book, a series of examples showcases some of the more conceptually advanced areas of physics, the presentation of which draws on the developments in the first part. A large number of problems helps students to hone their skills in using the presented mathematical methods. Solutions to the problems are available to instructors on an associated password-protected website for lecturers.

Contents

Preface xv

Part I Mathematics 1

1 Functions of One Variable 3

1.1 Limits 3

1.2 Elementary Calculus 5

1.2.1 Differentiation Products and Quotients 6

1.2.2 Chain Rule 7

1.2.3 Inverse Functions 8

1.3 Integration 10

1.4 The Binomial Expansion 14

1.5 Taylor's Series 15

1.6 Extrema 17

1.7 Power Series 17

1.8 Basic Functions 19

1.8.1 Exponential 19

1.8.2 Logarithm 22

1.9 First-Order Ordinary Differential Equations 24

1.10 Trigonometric Functions 25

1.10.1 L'Hôpital's Rule 27

Problems 27

2 Complex Numbers 29

2.1 Exponential Function of a Complex Variable 30

2.2 Argand Diagrams and the Complex Plane 32

2.3 Complex Logarithm 34

2.4 Hyperbolic Functions 34

2.5 The Simple Harmonic Oscillator 36

2.5.1 Mechanics in One Dimension 38

2.5.2 Damped and Driven Oscillations 40

Problems 47

3 VectorsinR 3 51

3.1 Basic Operation 51

3.1.1 Scalar Triple Product 55

3.1.2 Vector Equations of Lines and Planes 56

3.2 Kinematics in Three Dimensions 57

3.2.1 Differentiation 57

3.2.2 Motion in a Uniform Magnetic Field 57

3.3 Coordinate Systems 59

3.3.1 Polar Coordinates 59

3.4 Central Forces 60

3.5 Rotating Frames 64

3.5.1 Larmor Effect 66

Problems 67

4 VectorSpaces 71

4.1 Formal Definition of a Vector Space 71

4.2 Fourier Series 75

4.3 Linear Operators 78

4.4 Change of Basis 89

Problems 91

5 Functions of Several Variables 95

5.1 Partial Derivatives 95

5.1.1 Definition of the Partial Derivative 95

5.1.2 Total Derivatives 98

5.1.3 Elementary Numerical Methods 104

5.1.4 Change of Variables 107

5.1.5 Mechanics Again 109

5.2 Extrema under Constraint 111

5.3 Multiple Integrals 113

5.3.1 Triple Integrals 116

5.3.2 Change of Variables 117

Problems 121

6 Vector Fields and Operators 125

6.1 The Gradient Operator 125

6.1.1 Coordinate Systems 127

6.2 Work and Energy in Vectorial Mechanics 130

6.2.1 Line Integrals 133

6.3 A Little Fluid Dynamics 135

6.3.1 Rotational Motion 138

6.3.2 Fields 141

6.4 Surface Integrals 142

6.5 The Divergence Theorem 146

6.6 Stokes' Theorem 149

6.6.1 Conservative Forces 153

Problems 154

7 Generalized Functions 159

7.1 The Dirac Delta Function 159

7.2 Green's Functions 163

7.3 Delta Function in Three Dimensions 165

Problems 169

8 Functions of a Complex Variable 173

8.1 Limits 174

8.2 Power Series 178

8.3 Fluids Again 179

8.4 Complex Integration 180

8.4.1 Application of the Residue Theorem 186

Problems 192

Part II Physics 195

9 Maxwell's Equations: A Very Short Introduction 197

9.1 Electrostatics: Gauss's Law 197

9.1.1 Conductors 203

9.2 The No Magnetic Monopole Rule 204

9.3 Current 205

9.4 Faraday's Law 206

9.5 Ampère's Law 208

9.6 The Wave Equation 210

9.7 Gauge Conditions 211

Problems 213

10 Special Relativity: Four-Vector Formalism 217

10.1 Lorentz Transformation 217

10.1.1 Inertial Frames 217

10.1.2 Properties and Consequences of the Lorentz Transformation 220

10.2 Minkowski Space 220

10.2.1 Four Vectors 220

10.2.2 Time Dilation 226

10.3 Four-Velocity 227

10.3.1 Four-Momentum 229

10.4 Electrodynamics 234

10.4.1 Maxwell's Equations in Four-Vector Form 234

10.4.2 Field of a Moving Point Charge 237

10.5 Transformation of the Electromagnetic Fields 239

Problems 240

11 Quantum Theory 243

11.1 Bohr Atom 243

11.2 The de Broglie Hypothesis 246

11.3 The Schrödinger Wave Equation 246

11.4 Interpretation of the Wave function 249

11.5 Atom 251

11.5.1 The Delta Function Potential 252

11.5.2 Molecules 254

11.6 Formalism 257

11.6.1 Dirac Notation 257

11.7 Probabilistic Interpretation 258

11.7.1 Commutator Relations 259

11.7.2 Functions of Observables 261

11.7.3 Block's Theorem 261

11.7.4 Band Structure 263

11.8 Time Evolution 266

11.9 The Stern-Gerlach Experiment 269

11.9.1 Successive Measurements 270

11.9.2 Spin Space 271

11.9.3 Explicit Matrix Representation 272

11.9.4 Larmor Precession 274

11.9.5 EPR Paradox 275

11.9.6 Bell's Theorem 276

11.9.7 The Harmonic Oscillator 279

Problems 280

12 An Informal Treatment of Variational Principles and their History 287

12.1 Sin and Death 287

12.2 The Calculus of Variations 288

12.3 Constrained Variations 293

12.4 Hamilton's Equations 293

12.5 Phase Space 296

12.6 Fixed Points 296

Problems 298

A Conic Sections 301

A.1 Polar Coordinates 303

A.2 Intersection of a Cone and a Plane 304

B Vector Relations 305

B.1 Products 305

B.2 Differential Operator Relations 305

B.3 Coordinates 306

Cylindrical Polar 306

Spherical Polar 307

Bibliography 309

Index 311

最近チェックした商品