Grinding of Single-Crystal Superalloys : Fundamentals and Technologies (1. Auflage. 2026. 272 S. 244 mm)

個数:
電子版価格
¥20,307
  • 予約
  • 電子版あり
  • ポイントキャンペーン

Grinding of Single-Crystal Superalloys : Fundamentals and Technologies (1. Auflage. 2026. 272 S. 244 mm)

  • ウェブストア価格 ¥36,374(本体¥33,068)
  • WILEY-VCH(2026/01発売)
  • 外貨定価 EUR 139.00
  • クリスマスポイント2倍キャンペーン(~12/25)
  • ポイント 660pt
  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783527355228

Full Description

Comprehensive reference on state-of-the-art aerospace materials, reviewing the latest developments in the field and providing guidance on machining challenges

Grinding of Single-Crystal Superalloys provides a comprehensive understanding of grinding technology for single-crystal nickel-based superalloys. It explores and analyzes grinding mechanisms and characteristics using both theoretical and simulation approaches. Grinding behavior in conventional and micro grinding processes are evaluated and compared.

The book assesses the surface integrity of single-crystal nickel-based superalloys under different grinding conditions. Simulation and theoretical models for predicting temperature and residual stresses in profile grinding, facilitating optimization, and control are summarized and validated.

Grinding of Single-Crystal Superalloys discusses sample topics including:

Friction coefficient, wear volume, and wear rate during fretting
Influence of material anisotropy and different crystal orientations
Residual stress fields in grinding of single-crystal turbine blade roots
Yield and failure criterion
Analysis of formation mechanisms in nanostructures
Grinding of Single-Crystal Superalloys is an essential reference for industry professionals and researchers seeking to understand the machining theory and practice of this important type of material, especially in the field of aerospace components manufacturing.

Contents

Foreword xi
Preface xiii

Part I Grinding Mechanism of Single-crystal Nickel Alloy 1

1 Introduction 3
1.1 Development and Practical Application of Single-crystal Nickel Alloy 3
1.2 Advantages of Grinding Technology of Single-crystal Nickel Alloy 5
1.3 High-efficiency Grinding Technology Development of Single-crystal Nickel Alloy 7
1.4 Micro-grinding Technology Development of Single-crystal Nickel Alloy 18
1.5 Contents of this book 29

2 Removal Mechanism of Single-crystal Nickel Alloy in High-efficiency Grinding 33
2.1 Yield Criterion and Failure Criterion of Single-crystal Nickel Alloy 33
2.2 Simulation Model and Experiment Conditions 34
2.3 Simulation Results on Material Removal by Multi-abrasive Grains 34
2.4 Experimental Verification of Simulation Results 41

3 Plastic Deformation Mechanism of Single-crystal Nickel Alloy in Micro-grinding 45
3.1 Verification of Plastic Deformation Mechanism in Micro-grinding Materials 45
3.2 Microscale Debris in Micro-grinding of Single-crystal Nickel Alloy 49

Part II Grindability of Single-crystal Nickel Alloys 55

4 Grinding Force Evaluation 57
4.1 Grinding Force in Surface Grinding 57
4.2 Grinding Force in Profile Grinding 63
4.3 Grinding Force in Micro-grinding 67

5 Grinding Temperature Evaluation 77
5.1 Grinding Temperature in Surface Grinding 77
5.2 Grinding Temperature in Profile Grinding 81
5.3 Grinding Temperature in Micro-grinding 83

6 Grinding Wheel Wear Evaluation 93
6.1 Grinding Wheel Wear in Surface Grinding 93
6.2 Grinding Wheel Wear in Profile Grinding 102
6.3 Grinding Wheel Wear in Micro-grinding 111

Part III Surface Integrity by High-efficiency Grinding 129

7 Surface and Subsurface Microstructures in High-efficiency Grinding 131
7.1 Surface Microstructure and Surface Roughness in Surface Grinding 131
7.2 Subsurface Microstructure in Surface Grinding 133
7.3 Surface Microstructure and Surface Roughness in Profile Grinding 135
7.4 Subsurface Microstructure in Profile Grinding 138

8 Subsurface Nanostructures in High-efficiency Grinding 147
8.1 Subsurface Nanostructures in Profile Grinding 147
8.2 Analysis on Formation Mechanism of Nanostructures 152
8.3 Plastic Deformation and Microstructure Evolution of Single-crystal Nickel Superalloy 157

9 Microhardness and Residual Stresses in High-efficiency Grinding 167
9.1 Microhardness in Surface Grinding 167
9.2 Microhardness in Profile Grinding 167
9.3 Residual Stresses in Profile Grinding 169

10 Fretting Wear Behavior of the Machined Surface in High-efficiency Grinding 171
10.1 Friction Coefficient, Wear Volume, and Wear Rate During Fretting 171
10.2 Surface and Subsurface Microstructure During Fretting 174
10.3 Analysis of Fretting Wear Evolution on the Ground Surface 176

Part IV Surface Integrity in Micro-grinding 179

11 Surface Roughness in Micro-grinding 181
11.1 Theoretical Model of Surface Roughness 181
11.2 Influence of Grinding Parameters 184
11.3 Influence of Material Anisotropy of Nickel-based Single-crystal Superalloy 188
11.4 Influence of Different Crystal Orientations of Nickel-based Single-crystal Superalloy 191
11.5 Influence of Grinding Methods 194

12 Ground Surface and Subsurface Damage in Micro-grinding 197
12.1 Influence of Grinding Parameters 197
12.2 Influence of Working Fluid 200

13 Subsurface Microstructure and Recrystallization in Micro-grinding 203
13.1 Subsurface Microstructure in the Micro-grinding Process 203
13.2 Subsurface Recrystallization in Micro-grinding 210

Part V Simulation, Optimization, and Control in Grinding of Single-crystal Turbine Blade Root 219

14 Temperature Field in Grinding of Single-crystal Turbine Blade Root 221
14.1 FE Model for Grinding Temperature Simulation 221
14.2 Thermal Analysis for Grinding Temperature Simulation 223
14.3 Experimental Validation of Grinding Temperature 225
14.4 Temperature Simulation Results and Analysis 227

15 Residual Stress Field in Grinding of Single-crystal Turbine Blade Root 233
15.1 Mechanical Analysis for Residual Stress Simulation 233
15.2 Experimental Verification of Residual Stresses 238
15.3 Residual Stress Simulation Results and Analysis 239
15.4 Collaborative Manufacturing of Structure Shape and Surface Integrity 243

References 244
Index 247

最近チェックした商品