Sustainable Polygeneration with Carbon Capture and Utilisation (1. Auflage. 2026. 448 S. 244 mm)

個数:
  • 予約

Sustainable Polygeneration with Carbon Capture and Utilisation (1. Auflage. 2026. 448 S. 244 mm)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783527354818

Full Description

An original and up-to-date discussion of a promising sustainable energy technology

In Sustainable Polygeneration with Carbon Capture and Utilisation, a team of distinguished researchers delivers an up-to-date and authoritative discussion of the technologies used in the conversion of solid fuels, especially combustion, gasification, pyrolysis, and hydrothermal processes. The book explores the links between conversion processes, CO2 capture, and utilization. It also discusses the numerical simulation of polygeneration plants based on one-dimensional process simulation models—steady-state and dynamic—as well as three-dimensional CFD models.

Organised into four sections, the book begins with descriptions of conversion processes for fossil and renewable solid fuels. It moves on to explore CO2 capture and utilisation processes for emission sources. It also discusses sustainable polygeneration plants before finishing with an examination of the mathematical models used for polygeneration plant simulations.

Readers will also find:

A thorough introduction to the essentials of CO2 capture and utilisation, fuel conversion, and renewable energy
Comprehensive explorations of sustainability and polygeneration
Practical discussions of the numerical simulation of polygeneration
Insightful treatments of possible future research directions in sustainable polygeneration

Perfect for chemical engineers, process engineers, and industrial chemists, Sustainable Polygeneration with Carbon Capture and Utilisation will also benefit environmental chemists.

Contents

Table Of Contents FOREWORD PREFACE TABLE OF CONTENTS NOMENCLATURE Latin symbols Greek symbols Dimensionless numbers Subscripts and indices Chemical symbols Abbreviations BEFORE YOU START READING 1INTRODUCTION 1.1Carbon Dioxide 1.2Conversion Processes 1.3Polygeneration 1.4Structure Bibliography 2ENERGY CONVERSION PROCESSES 2.1Introduction 2.2Solid Fuels 2.2.1Conventional Solid Fuels 2.2.2Non-Conventional Solid Fuels Bibliography 3COMBUSTION 3.1Introduction 3.2Technologies and Processes 3.2.1Grate-firing 3.2.2Fluidized-Bed Technology 3.2.2.1Fixed-Bed Combustion 3.2.2.2Bubbling Fluidized-Bed Combustion 3.2.2.3Circulating Fluidized-Bed Combustion 3.2.3Pulverised Combustion 3.2.4Solar-Assisted Power Plant 3.2.5Geothermal-Assisted Power Plant 3.2.6Technologies Comparison 3.3Thermodynamic Cycle 3.3.1Steam Rankine Cycle 3.3.2Organic Rankine Cycle 3.3.3Kalina Cycle 3.3.4Carbon Dioxide Brayton Cycle 3.3.5Cycle Comparison 3.4Pollutant Emissions 3.4.1Carbon Monoxide 3.4.2Nitrogen Oxides 3.4.3Sulphur Oxides 3.4.4Hydrogen Chloride 3.4.5Particulate Matter 3.4.6Mercury Bibliography Table Of Contents FOREWORD PREFACE TABLE OF CONTENTS NOMENCLATURE Latin symbols Greek symbols Dimensionless numbers Subscripts and indices Chemical symbols Abbreviations BEFORE YOU START READING 1INTRODUCTION 1.1Carbon Dioxide 1.2Conversion Processes 1.3Polygeneration 1.4Structure Bibliography 2ENERGY CONVERSION PROCESSES 2.1Introduction 2.2Solid Fuels 2.2.1Conventional Solid Fuels 2.2.2Non-Conventional Solid Fuels Bibliography 3COMBUSTION 3.1Introduction 3.2Technologies and Processes 3.2.1Grate-firing 3.2.2Fluidized-Bed Technology 3.2.2.1Fixed-Bed Combustion 3.2.2.2Bubbling Fluidized-Bed Combustion 3.2.2.3Circulating Fluidized-Bed Combustion 3.2.3Pulverised Combustion 3.2.4Solar-Assisted Power Plant 3.2.5Geothermal-Assisted Power Plant 3.2.6Technologies Comparison 3.3Thermodynamic Cycle 3.3.1Steam Rankine Cycle 3.3.2Organic Rankine Cycle 3.3.3Kalina Cycle 3.3.4Carbon Dioxide Brayton Cycle 3.3.5Cycle Comparison 3.4Pollutant Emissions 3.4.1Carbon Monoxide 3.4.2Nitrogen Oxides 3.4.3Sulphur Oxides 3.4.4Hydrogen Chloride 3.4.5Particulate Matter 3.4.6Mercury Bibliography
4GASIFICATION 4.1Introduction 4.2Technologies and Processes 4.2.1Fixed-bed Gasifier 4.2.2Entrained-Flow Gasifier 4.2.3Fluidized-Bed Gasifier 4.2.3.1Single Fluidized-Bed Gasification 4.2.3.2Dual Fluidized-Bed Gasification 4.2.4Plasma Gasification 4.2.5Solar-Driven Gasification 4.2.6Microwave-Assisted Gasification 4.2.7Catalytic Gasification 4.2.8Technologies Comparison 4.2.8.1Feedstock 4.2.8.2Product Gas Quality 4.2.8.3Development Status 4.2.8.4Capital and Operational Expenditures 4.3Product Gas Purification and Conditioning 4.3.1Particulate Matter 4.3.2Halide and Trace Metals 4.3.3Tar and Hydrocarbons 4.3.4Hydrogen-to-Carbon Monoxide Ratio 4.3.5Acid Gas Removal 4.4Syngas Conversion Technologies 4.4.1Synthesis of Fuels and Chemicals 4.4.1.1Ammonia Synthesis 4.4.1.2Fischer-Tropsch Synthesis 4.4.1.3Methanol Synthesis 4.4.1.4Mixed Alcohols Synthesis 4.4.1.5Syngas Fermentation 4.4.1.6Hydrogen Synthesis 4.4.1.7Technologies Comparison 4.4.2Power and Heat Generation 4.4.2.1Single-Cycle Gas Turbine 4.4.2.2Combined Cycle Power 4.4.2.3Reciprocating Internal Combustion Engine 4.4.2.4Fuel Cell 4.4.2.5Technologies Comparison Bibliography 5OTHER CONVERSION TECHNOLOGIES 5.1Pyrolysis 5.1.1Technologies and Processes 5.1.2Technologies Comparison 5.2Hydrothermal Process 5.3Steam Reforming 5.3.1Technologies and Processes 5.3.1.1Conventional Steam Reforming 5.3.1.2Dry reforming 5.3.1.3Partial Oxidation 5.3.1.4Other Processes 5.3.2Technologies Comparison Bibliography 6SEMI-INDUSTRIAL SCALE EXPERIMENTS 6.1Introduction 6.2Combustion 6.2.1Fluidized-Bed Combustion 6.2.2Pulverised Combustion 6.3Gasification 6.3.1High-Temperature Winkler 6.3.2Chemical-looping Gasification Bibliography 7CARBON CAPTURE AND UTILISATION 7.1Introduction 7.1.1Stationary Carbon Capture 7.1.2Mobile Carbon Capture 7.1.3Negative Carbon Emissions 7.2CO2 Transportation 7.3CO2 Storage/Utilisation Bibliography 8PRE-COMBUSTION CARBON CAPTURE 8.1Introduction 8.2Conversion Processes 8.2.1Gasification 8.2.2Steam Reforming 8.3Carbon Capture Methods 8.3.1Absorption-Based Carbon Capture Processes 8.3.1.1Physical Absorption Processes 8.3.1.2Chemical Absorption Processes 8.3.2Adsorption-Based Carbon Capture Processes 8.3.2.1Physical Adsorption Processes 8.3.2.2Chemical Adsorption Processes 8.3.3Other Carbon Capture Processes 8.3.3.1Membrane-Based Processes 8.3.3.2Low-Temperature Separation Processes 8.3.3.3Solar-Assisted Pre-Combustion Processes Bibliography 9POST-COMBUSTION CARBON CAPTURE 9.1Introduction 9.2Carbon Capture Methods 9.2.1Absorption-Based Carbon Capture Processes 9.2.2Adsorption-Based Carbon Capture Processes 9.2.3Other Carbon Capture Processes 9.2.3.1Membrane-Based Processes 9.2.3.2Low-Temperature Separation Processes 9.2.3.3Solar-Assisted Post-Combustion Carbon Capture Processes 9.3Carbonate-Looping Process 9.3.1Directly Heated Carbonate-looping Process 9.3.2Indirectly Heated Carbonate-looping Process 9.3.3Fundamentals and Process Layout 9.3.3.1Chemical Equilibrium of the CaCO3-CaO System 9.3.3.2Reaction Regimes of the CaCO3/CaO System 9.3.3.3Deactivation of Sorbent 9.3.3.4Evaluation Parameters of the Carbonate-looping Process 9.3.3.5Pilot-Scale Investigation of the CaL Process Bibliography 10OXYFUEL COMBUSTION 10.1Introduction 10.2Non-Cryogenic Processes 10.2.1Adsorption-Based Carbon Capture Processes 10.2.2Absorption-Based Carbon Capture Processes 10.2.3Membrane-Based Carbon Capture Processes 10.2.3.1Polymeric Membranes 10.2.3.2Ion Transport Membrane 10.3Cryogenic Processes 10.4Solar-Assisted Oxyfuel Combustion Processes 10.5Technologies Comparison 10.6Chemical-Looping Combustion 10.6.1CLC Processes 10.6.1.1Gaseous Fuel CLC Processes 10.6.1.2iG-CLC Processes 10.6.1.3CLOU Processes 10.6.1.4Syngas-CLC Processes 10.6.2Oxygen Carrier 10.6.2.1Reactivity 10.6.2.2Reaction Mechanisms 10.6.2.3Mechanical Resistance 10.6.2.4Cost 10.6.3Pilot-Scale Investigation of CLC Process 10.6.3.1Gaseous Fuels 10.6.3.2Solid Fuels Bibliography 11CO2 UTILISATION 11.1Introduction 11.2Technologies and Processes 11.2.1Direct Use 11.2.2Indirect Use 11.2.2.1Chemical Utilisation 11.2.2.2Biological Utilisation 11.2.2.3Photoelectrochemical, Electrochemical, and Photochemical Reduction 11.3Technologies Comparison Bibliography 12SEMI-INDUSTRIAL SCALE EXPERIMENTS 12.1Introduction 12.2Carbonate-looping Process 12.2.1Directly Heated Carbonate-looping Process 12.2.1.1Waste-Derived Fuels in Directly Heated Carbonate-looping Process 12.2.1.2Indirectly Heated Carbonate-looping Process 12.3Oxyfuel Combustion 12.3.1Oxyfuel Fluidized-Bed Combustion 12.3.2Oxyfuel Pulverised Combustion 12.3.3Chemical-looping Combustion 12.4Absorption-Based Carbon Capture Processes Bibliography 13SUSTAINABILITY AND POLYGENERATION 13.1Introduction 13.2Conversion Devices and Outputs 13.2.1Power, Heat and Cooling 13.2.2Chemicals and Fuels 13.2.3Potable Water 13.2.4Energy Storage System 13.3Polygeneration With Carbon Capture 13.4Methodologies for Polygeneration Evaluation Bibliography 14POLYGENERATION PLANTS BASED ON FOSSIL FUELS 14.1Introduction 14.2Coal-Based Polygeneration 14.2.1Energy Services 14.2.2Synthesis of Chemicals and Fuels 14.2.3Desalination Processes 14.3Natural Gas-Based Polygeneration 14.3.1Energy Services 14.3.2Synthesis of Chemicals and Fuels 14.3.3Desalination Processes 14.4Other Fossil Fuel-Based Polygeneration 14.5Multiple Fossil-Fuels-Based Polygeneration Bibliography 15POLYGENERATION SYSTEMS BASED ON RENEWABLE ENERGY 15.1Introduction 15.2Biomass-Based Polygeneration 15.2.1Energy Services 15.2.2Synthesis of Chemicals and Fuels 15.2.3Desalination Processes 15.3Solar-Based Polygeneration 15.4Geothermal-Based Polygeneration 15.5Wind-Based Polygeneration 15.6Multiple Renewable Energies-Based Polygeneration Bibliography 16HYBRID POLYGENERATION PLANTS BASED ON RENEWABLES AND FOSSIL FUELS Bibliography 17NUMERICAL SIMULATION OF POLYGENERATION Bibliography 18PROCESS SIMULATION 18.1Introduction 18.2Process Components 18.2.1Connection Point 18.2.2Thin-Walled Tube 18.2.3Thick-walled tube 18.2.4Turbomachines 18.3Automation Components 18.3.1Measurement Modules 18.3.2Analogue Modules 18.3.3Binary Modules 18.3.4Signal Source Modules 18.3.5Controller Modules 18.4Electrical Components 18.4.1Basic modules 18.4.2DC and AC modules 18.5Additional Components 18.6Thermal Hydraulic Models 18.6.1Mixture-Flow Model 18.6.2Two-Fluid Model 18.6.2.1Four-Equation Flow Model 18.6.2.2Five-Equation Flow Model 18.6.2.3Six-Equation Flow Model 18.6.2.4Seven-Equation Model 18.6.3Solution Method Biography 19CFD SIMULATION 19.1Introduction 19.2Single-Phase Flow 19.2.1Particle Methods 19.2.2Grid-Based Methods 19.3Two-Phase Flow 19.3.1Mixture Model 19.3.2Two-Fluid Model 19.3.3Discrete-Particle Model 19.3.4Hybrid Method 19.3.5Balance Equations for Solid-Phase 19.3.6Interphase Coupling 19.4Turbulence Bibliography 20PROCESS AND CFD STUDIES Bibliography 21CONCLUSION  

最近チェックした商品