Electrospinning for Proton Exchange Membrane Fuel Cells (1. Auflage. 2025. 272 S. 5 SW-Abb., 17 Farbabb., 18 Tabellen. 244 mm)

個数:
電子版価格
¥18,488
  • 電子版あり

Electrospinning for Proton Exchange Membrane Fuel Cells (1. Auflage. 2025. 272 S. 5 SW-Abb., 17 Farbabb., 18 Tabellen. 244 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783527354627

Full Description

Comprehensive reference on the design, characteristics, performance, and development potential of key components of PEMFC through electrospinning technologies

Electrospinning for Proton Exchange Membrane Fuel Cells discusses the use of electrospun materials in preparing next-generation fuel cell proton-conducting membranes, comprehensively reviewing the essential parts of proton exchange membrane fuel cell (PEMFC) components including the catalyst layer, gas diffusion layer, and proton exchange membrane. The book covers both electrochemical methods and hands-on experimental processes and provides a perspective of hydrogen fuel and PEMFC vehicles in the transformation of low-carbon energy.

Electrospinning for Proton Exchange Membrane Fuel Cells includes information on:

Working principles, current state of research, and existing obstacles of PEMFC components, as well as the role of electrospinning and nanofibers in PEMFC
Physical properties and electrochemical polarization of the nanofiber catalyst layer prepared by electrospinning
Water management ability of fuel cells under high inlet humidity
Cold starting ability and performance aging of PEMFC through the electrospun microporous layer under high current density
Experimental devices for the study of the electrospun proton exchange membrane and composite proton exchange membrane

Electrospinning for Proton Exchange Membrane Fuel Cells is an excellent reference on the subject for materials scientists, catalytic chemists, polymer chemists, electrochemists, and electronics engineers.

Contents

About the Authors xiii

Preface xv

Acknowledgment xvii

1 Introduction to Proton Exchange Membrane Fuel Cells 1

1.1 Overview of Proton Exchange Membrane Fuel Cells Technology 1

1.1.1 Brief History and Development of Proton Exchange Membrane Fuel Cell 1

1.1.2 Need for H2 -Powered Fuel Cell Technology in Today's World 2

1.2 Key Components of Proton Exchange Membrane Fuel Cell 6

1.2.1 Catalyst Layer 6

1.2.2 Gas Diffusion Layer 9

1.2.3 Proton Exchange Membrane 10

1.2.3.1 Proton Transport Mechanisms 11

1.2.3.2 Classification of PEM 14

References 16

2 Classification of Catalyst for Proton Exchange Membrane Fuel Cell 23

2.1 State-of-the-Art Electrocatalysts 23

2.1.1 Pt-Alloy Electrocatalysts 23

2.1.2 Carbon-Supported Transition Metal Catalysts (M-N-C) 25

2.1.3 MXene-Based ORR Catalysts 26

2.1.4 Metal-Organic Framework Electrocatalysts 27

2.1.5 Carbon-Based Metal-Free Electrocatalyst 28

2.2 Fabrication of Catalyst Layers (CL) in Proton Exchange Membrane Fuel Cell 29

2.2.1 GDE Membrane Electrode 29

2.2.2 Catalyst-Coated Membrane Electrode 31

2.2.3 Ordered Membrane Electrode 32

2.3 Conclusion 33

References 33

3 Electrospun Catalyst Layer for Proton Exchange Membrane Fuel Cell 39

3.1 Introduction 39

3.2 Materials Preparation 39

3.2.1 Preparation of Nanofiber Catalyst Layers 39

3.3 Preparation and Electrochemical Characterization 41

3.3.1 Preparation of Single Cell 41

3.3.2 Polarization Curve Testing (V-I) 42

3.3.3 Cyclic Voltammetry Testing 42

3.3.4 Linear Sweep Voltammetry Testing 43

3.3.5 Electrochemical Impedance Spectroscopy Testing 43

3.4 Results and Discussion 44

3.4.1 Polarization Curve (V-I) of Preconditioning Process 44

3.4.2 Electrochemical Impedance Spectroscopy of Preconditioning Process 46

3.4.3 Impedance Fitting Data of Preconditioning Process 48

3.4.4 Electrochemically Active Surface Area of Preconditioning Process 49

3.4.5 Exchange Current Density of Preconditioning Process 49

3.4.6 Mechanism of Activation Process 51

3.5 Conclusion 53

References 54

4 Analysis of Nanofiber Catalyst Layers Performance Under Various Temperature and Humidity Conditions 57

4.1 Introduction 57

4.2 Materials Preparation 57

4.3 Result and Discussion 57

4.3.1 Polarization Curves (V-I) at Constant Temperature and Different Humidity Levels 57

4.3.2 Polarization Curves (V-I) at Different Temperatures and Constant Humidity 59

4.3.3 Polarization Curves and Loss Separation at Different Temperatures and Humidity 61

4.4 Conclusion 63

References 64

5 The Role and Performance of Gas Diffusion Layers in Proton Exchange Membrane Fuel Cell 67

5.1 Introduction 67

5.2 Research on Gas Diffusion Layer and Water/Gas Transport Mechanisms 68

5.2.1 Research on Microporous Layer 72

5.3 Conclusion 75

References 75

6 Preparation of Gradient Gas Diffusion Layer Process and Their Performance in Fuel Cell 79

6.1 Introduction 79

6.2 Materials Preparation 79

6.2.1 Effect of Ultrasonic Time on Gas Diffusion Layer Preparation 79

6.2.2 Effect of Polytetrafluoroethylene Addition Sequence 80

6.2.3 Investigation of Ethanol Content and Heating Plate Temperature 80

6.2.4 Preparation and Testing of Gradient Gas Diffusion Layer 80

6.3 Results and Discussion 81

6.3.1 Hydrophobicity 81

6.3.2 Water Permeability and Conductivity 81

6.3.3 Pore Size Distribution 83

6.3.4 Pore Volume Distribution 84

6.3.5 Surface Roughness 85

6.3.6 Surface Morphology 86

6.3.7 Polarization Curve and Power Density 88

6.3.8 Electrochemical Impedance Spectroscopy Test 91

6.4 Conclusion 92

References 92

7 Impact of Optimizing the Thickness Direction of Gradient Gas Diffusion Layer on Water-Gas Management Capability of the Fuel Cell 95

7.1 Introduction 95

7.2 Materials Preparation 95

7.2.1 Preparation Process of Gradient Gas Diffusion Layers 95

7.3 Results and Discussion 96

7.3.1 Physical Characterizations 97

7.3.2 Analysis of Polarization Curve (I-V) 98

7.3.3 Analysis of Power Density 100

7.3.4 Water Transport Mechanism 101

7.3.5 Comparison of Capillary Pressure Differences in Gas Diffusion Layers with Varying Thicknesses 101

7.3.6 Electrochemical Impedance Spectroscopy 103

7.3.7 Polarization Curve Reproducibility 104

7.4 Conclusion 104

References 105

8 Study on the Effect of Gradient Hydrophobic Treatment of Gas Diffusion Layer on Water Management Performance in Fuel Cells 107

8.1 Introduction 107

8.2 Materials Preparation 107

8.3 Results and Discussion 108

8.3.1 Analysis of Polarization Curve (I-V) 108

8.3.2 Analysis of Power Density 109

8.3.3 Analysis of Electrochemical Impedance Spectroscopy 110

8.3.4 Analysis of Physical Performance 110

8.3.5 Verifying the Effect of Gradient Hydrophobic Gas Diffusion Layers with Different Polytetrafluoroethylene/Carbon Black Ratios in Fuel Cells 112

8.3.5.1 Analysis of Polarization Curve 112

8.3.5.2 Analysis of Power Density 113

8.3.5.3 Analysis of Electrochemical Impedance Test Results 114

8.4 Comparison of Membrane Electrodes 114

8.5 Conclusion 115

References 115

9 Fundamentals of Proton Exchange Membranes 117

9.1 Introduction 117

9.1.1 Partially Fluorinated Proton Exchange Membranes 118

9.1.2 Fluorine-Free Proton Exchange Membranes 119

9.1.3 Sulfonated Polysulfone Proton Exchange Membranes 120

9.1.4 Sulfonated Polyaryletherketone Proton Exchange Membranes 121

9.1.5 Sulfonated Polyimide Proton Exchange Membranes 124

9.2 Conclusion 125

References 126

10 Design of Proton Exchange Membrane 131

10.1 Introduction 131

10.2 Design of Molecular Structure 132

10.3 Physical and Chemical Cross-Linking Modification 134

10.4 Enhancing Stability and Performance Through Chemical Cross-Linking 136

10.5 Modulating the Structure of Ordered Microporous Materials 141

10.6 Construction of Novel Proton Transport Channels 145

10.7 Conclusion 147

References 148

11 Highly Sulfonated Poly(Ether Ether Ketone) Nanofibers Constructed Plasmonic Transport Channels 155

11.1 Introduction 155

11.2 Materials Preparation 156

11.2.1 Preparation of Sulfonated Poly(Ether Ether Ketone) with Different Degrees of Sulfonation 156

11.2.2 Substitution of Counteracting Ions 156

11.2.3 Preparation of Sulfonated Poly(Ether Ether Ketone) Nanofibers 157

11.2.4 Preparation of Nanofiber Composite Membranes 157

11.2.5 Thermal Cross-Linking of Nanofiber Composite Membranes 158

11.3 Results and Discussion 158

11.3.1 Preparation of Sulfonated Poly(Ether Ether Ketone) and Characterization of Nanofibers 158

11.3.2 Cross-Sectional Morphology of Fiber Composite Membranes 160

11.3.3 Chemical Structure Characterization of Composite Membranes 162

11.3.4 Mechanical Properties and Thermal Stability 163

11.3.5 Water Absorption and Solubility 164

11.3.6 Membrane Proton Conductivity 165

11.3.7 Antioxidant Stability 166

11.3.8 Fuel Cell Performance 168

11.4 Conclusion 169

References 170

12 Polydopamine-Modified Halloysite Nanotube/Sulfonated Poly(Ether Ether Ketone) Cross-Linked Composite Membrane 173

12.1 Introduction 173

12.2 Materials Preparation 175

12.2.1 Polydopamine Coating of Halloysite Nanotubes 175

12.2.2 Sulfonation of Poly(Ether Ether Ketone) 175

12.2.3 Preparation of Thermally Cross-Linked Composite Membranes 176

12.3 Results and Discussion 176

12.3.1 Characterization of Dopamine-Modified Halloysite Nanotubes 176

12.3.2 Discussion on the Sulfonation Process of Poly(Ether Ether Ketone) 179

12.3.3 Morphological Characterization of Composite Membranes 180

12.3.4 Chemical and Physical Properties of the Composite Membranes 180

12.3.5 Ion Exchange Capacities, Water Absorption Rate, and Swelling Rate 183

12.3.6 Proton Conductivity 186

12.3.7 Fuel Cell Performance 189

12.4 Conclusion 190

References 190

13 Construction of Ordered Proton Transport Channels with Phosphotungstic Acid Modified Magnetic Nanoparticles 193

13.1 Introduction 193

13.2 Materials Preparation 194

13.2.1 Preparation of Magnetic Nanoparticles 194

13.2.2 Preparation of Phosphotungstic Acid-Loaded Magnetic Nanoparticles 194

13.2.3 Sulfonation of Poly(Ether Ether Ketone) and Preparation of Composite Membranes 195

13.2.4 Preparation of Composite Membranes 195

13.3 Result and Discussion 196

13.3.1 Preparation and Characterization of DMNPs@HPW 196

13.3.2 Morphology of Composite Membrane Sections 201

13.3.3 Proton Conduction Pathways and Particle Distribution 202

13.3.4 Characterization of Composite Membranes X-ray Diffraction 202

13.3.5 Mechanical Properties of Composite Membranes 204

13.3.6 Ion Exchange Capacities, Water Uptake, and Swelling Ratio 205

13.3.7 Proton Conductivity of the Membranes 207

13.3.8 Fuel Cell Performance 210

13.4 Conclusion 211

References 212

14 Chemical Covalent Bonding of Silicotungstic Acid Proton Exchange Membrane 215

14.1 Introduction 215

14.2 Materials Preparation 216

14.2.1 Synthesis of 4-Phenoxyphenyl Phosphoric Acid 216

14.2.2 Synthesis of 4-Phenoxyphenyl Diethylphosphoric Acid Ester 216

14.2.3 Hydrolysis to Prepare 4-Phenoxyphenyl Phosphoric Acid 217

14.2.4 Preparation of Deficient Silicotungstic Acid Potassium 217

14.2.5 Preparation of POP-SiWA 217

14.2.6 Sulfonated Poly(Ether Ether Ketone)-Immobilized POP-SiWA 218

14.3 Results and Discussion 220

14.3.1 Characterization of POP-SiWA 220

14.3.2 Discussion on Thermal Cross-Linking and Grafting 222

14.3.3 Characterization of Cross-Linked Grafted Membranes 230

14.3.4 Ion Exchange Capacities, Water Uptake, and Swelling Ratio 232

14.3.5 Anti-Free Radical Oxidation Properties 234

14.3.6 Proton Conductivity 235

14.3.7 Fuel Cell Performance 237

14.4 Conclusion 239

References 239

Index 241

最近チェックした商品