Nanotechnology-based Sustainable Agriculture (1. Auflage. 2025. 432 S. 244 mm)

個数:
電子版価格
¥18,874
  • 電子版あり

Nanotechnology-based Sustainable Agriculture (1. Auflage. 2025. 432 S. 244 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783527354559

Full Description

Provides detailed guidance on harnessing nanotechnology for sustainable agriculture, combines theoretical frameworks with actionable strategies

Nanotechnology-based Sustainable Agriculture offers an in-depth exploration of how nanotechnology is revolutionizing agricultural practices to enhance crop productivity and environmental sustainability. Addressing key challenges in conventional agriculture, this volume presents the cutting-edge roles of various nanomaterials, such as carbon nanotubes and quantum dots, in boosting efficiency and reducing environmental impact.

Emphasizing practical solutions, ranging from nano biofertilizers and nanobioremediation to innovative pest control strategies, an expert panel of authors provides a roadmap for integrating nanotechnology into sustainable agricultural systems. In-depth chapters describe both the fabrication of nanomaterials and their application in soil quality assessment, pollutant remediation, and crop disease management. Throughout the text, the authors highlight opportunities and address challenges to ensure the safe and effective adoption of these technologies.

Enhancing crop productivity and environmental health through innovative solutions, Nanotechnology-based Sustainable Agriculture:

Explores a wide range of nanotechnologies for use in agriculture, including plant-based nanomaterials, chitosan nanoparticles, and silver nanoparticles
Presents strategies for minimizing environmental and health impacts while maximizing crop productivity
Incorporates the latest developments in nanobiotechnology, phytonanotechnology, and nano-bioremediation
Discusses the challenges and potential risks of nanomaterial-based chemicals in agricultural systems
Examines diverse case studies and strategies to achieve food security and sustainable agriculture on a global scale

Nanotechnology-based Sustainable Agriculture is essential reading for advanced students, researchers, and professionals in environmental science, material science, and agriculture. It is well-suited as a textbook for graduate and postgraduate courses in sustainable agriculture or nanotechnology, as well as a reference for professionals in research and development, policymaking, and industry.

Contents

List of Contributors xvii

Preface xxiii

1 Fabrication of Nanomaterials and Their Potential Advantage for Sustainable Agriculture 1
Arjun Kumar Mehara, Anuradha Kumari, Neeraj K. Verma, Prachi Marwaha, Abhishek Rai, Mayank Kumar Singh, and Ankit Kumar Singh

1.1 Introduction 1

1.1.1 Shortcomings of Conventional Agriculture 2

1.2 Fabrication Techniques for Nanomaterials 3

1.2.1 Top-down Approaches 3

1.2.1.1 Mechanical Milling or Ball Milling 4

1.2.1.2 Nanolithography 5

1.2.1.3 Laser Ablation Method 5

1.2.1.4 Thermal Decomposition 5

1.2.1.5 Sputtering Method 6

1.2.1.6 Arc-discharge Method 6

1.2.2 Bottom-up Approach 7

1.2.2.1 CVD Method 7

1.2.2.2 Sol-Gel Method 7

1.2.2.3 Spinning Method 7

1.2.2.4 Hydrothermal Method 8

1.3 Green Synthesis of Nanomaterials 8

1.3.1 Nanomaterial Synthesis Using Microorganism 8

1.3.2 Nanomaterial Synthesis Using Bacteria 9

1.3.3 Nanomaterial Synthesis Using Actinomycetes 9

1.3.4 Green Synthesis of NP Using Fungi 10

1.3.5 Nanomaterial Synthesis Using Plant Extract 10

1.4 Nanomaterials as Controlled Delivery System for Actives and Sustainable Agriculture 11

1.4.1 Carrier-based Nanomaterials 11

1.4.1.1 Nanopesticides 14

1.4.1.2 Nanofertilizers 15

1.4.1.3 Nanosensors 15

1.4.1.4 Stimuli-responsive Nanocarriers 15

1.4.2 Carrier-free Nanomaterials 20

1.4.2.1 Micronutrient NFs 21

1.4.2.2 Macronutrient NFs 22

1.4.2.3 Nano-biofertilizers 24

1.5 Challenges and Future Outlook 25

1.6 Conclusion 26

Acknowledgments 26

References 27

2 Effect of Nanocomposites on Sustainable Growth of Crop Plants and Productivity 47
Katina Chachei, Sonali Ranjan, Kirpa Ram, and Ram Sharan Singh

2.1 Introduction 47

2.2 Types of NCs and Its Uptake Through Roots and Leaves in Plants 49

2.2.1 Metal-based Polymer Composites 50

2.2.2 Carbon-based Polymer Composites 50

2.3 Application and Effects of NCs in Plant Development and Productivity 51

2.3.1 Positive Effects on the Application of NCs in Plant 52

2.3.1.1 NC-based Fertilizer 55

2.3.1.2 NC-based Pesticide: Fungicide, Bactericide, and Herbicide 57

2.3.1.3 Biochar-based NCs 59

2.3.1.4 NC-based Materials as Sensors 60

2.3.1.5 Biopolymer-based NCs 61

2.3.1.6 Chitosan-based NCs 62

2.4 Adverse Effects of NCs on Crop Productivity and Sustainability 64

2.5 Challenges and Future Prospects in Application of NCs on Crop Plants 67

2.6 Conclusion 68

Acknowledgement 68

Author Contribution 68

References 68

3 Role of Nanofertilizers in Sustainable Growth of Crop Plants and Production 77
Aaradhya Pandey, Pragya Tiwari, and Eti Sharma

3.1 Introduction 77

3.2 NFs, Its Types, and Synthesis Methods 78

3.2.1 NF and Their Significance in Current Agriculture 80

3.2.2 Classification of NFs 83

3.2.2.1 Action-based NFs 83

3.2.2.2 Nutrient-based NFs 83

3.2.2.3 Consistency-based NFs 84

3.2.2.4 Nanocarrier-loaded NFs 84

3.2.2.5 Nano-biofertilizers 84

3.3 Mode of Action 84

3.3.1 Mechanism of Nutrient Release and Uptake by Plants 85

3.3.2 Increased Nutrition Uptake by Plants 87

3.3.3 Improved Water and Nutrient Retention in Soil 87

3.4 Contribution Toward Sustainable Agriculture 88

3.4.1 Enhanced Nutrient Retention Capacity 88

3.4.2 Biotic and Abiotic Stress Tolerance by Plants 88

3.4.3 Increase Microbial Activity 89

3.4.4 Lesser Environmental Pollution 89

3.5 Customization of NFs 90

3.5.1 Dosage Optimization 90

3.5.2 Method of NFs' Application 91

3.5.2.1 Foliar Spray 91

3.5.2.2 Nanopriming 91

3.5.2.3 Soil Treatment 92

3.6 NFs' Integration with Precision Agriculture 92

3.7 Ethical, Regulatory, and Safety Issues 93

3.8 Advantages and Limitations 95

3.8.1 Advantages of NFs 95

3.8.2 Limitation of NFs 96

3.9 Conclusion and Future Perspective 97

References 97

4 Nanotechnology is an Emerging Tool for Stress Management in Crop Plants 105
Mohd Anas, Mohammad Umar, and Abdul Razzak

4.1 Introduction 105

4.2 Synthesis and Characterization of Nanomaterials 109

4.2.1 Bottom-up Method 109

4.2.2 Chemical Method 109

4.2.3 Biological Method 109

4.2.4 Top-down Method (Physical Approach) 110

4.3 Characterization of Nanomaterials 110

4.4 Applications of Nanotechnology in Managing Abiotic Stress 111

4.4.1 Drought Stress 111

4.4.2 Salt Stress 112

4.4.3 Thermal Stress 113

4.4.4 Toxic Metal Stress 115

4.4.5 Organic Pollutants Stress 116

4.4.6 Hypoxia and Anoxia Stresses 117

4.5 Environmental Implications: Case Studies and Recent Plant Research 118

4.5.1 NPs as Phytoregulators 119

4.5.2 NPs for Preserving Soil Integrity and Functionality 120

4.5.3 Utilizing Nanopesticides in Plant Defense 121

4.5.4 Antimicrobial Action of NPs 123

4.6 Conclusion and Future Perspectives 124

References 125

5 Impacts of Nanomaterials on Soil Microbial Communities 135
Nisha Kumari, Abhishek Tiwari, Ingle Sagar Nandulal, Sai Parasar Das, Bhabani Prasad Mondal, Bipin Bihari, Pritam Ganguly, Chandini, and Randeep Kumar

5.1 Introduction 135

5.2 Types of Nanomaterials and Their Agricultural Applications 136

5.3 Soil Microbial Communities: Role in Agriculture 136

5.3.1 Composition and Functions 136

5.4 Effect of NPs on Microbial Diversity 137

5.4.1 Changes in Microbial Community Structure 138

5.4.2 Impacts of NMs on Microbial Function and Soil Health 138

5.5 Ecotoxicology of NPs on Soil Microbial Community 139

5.5.1 Effects of Zinc NPs 139

5.5.2 Effect of Titanium NPs 140

5.5.3 Effect of Ag-NPs 141

5.5.4 Effect of Iron NPs 142

5.5.5 Effect of Copper NPs 142

5.6 Assessment and Monitoring of NM Impacts 143

5.6.1 Long-term Effects on Soil Ecosystem Services 143

5.6.2 Potential Risks and Benefits 144

5.7 Mitigation Strategies and Future Directions 145

5.7.1 Approaches to Minimize Negative Impacts 145

5.8 Regulatory and Policy Considerations 147

5.9 Future Research Prospects and Knowledge Gaps 148

5.9.1 Method of Application of Nanofertilizers 148

5.9.2 Formation of Successful Execution Mechanisms 149

5.9.3 Assessing the Financial Possibility of Extensive Production 149

5.9.4 Significance of Nanofertilizers on Environment 149

5.10 Conclusion 149

References 150

6 Silver Nanoparticles' Emerging Roles in Enhancing Crop Plant Growth and Yield 159
Anuradha Kumari, Anumanchi Sree Manogna, Prabhat Kumar, and Ilora Ghosh

6.1 Introduction 159

6.2 AgNPs: Synthesis and Characterization 161

6.2.1 Methods for Synthesizing AgNPs 161

6.2.1.1 Chemical Methods 162

6.2.1.2 Physical Methods 162

6.2.1.3 Biological Methods 162

6.2.2 Factors Influencing the Synthesis Process and NP Properties 163

6.2.2.1 Concentration of Silver Precursor 163

6.2.2.2 Reducing Agent Type and Concentration 163

6.2.2.3 Stabilizing Agents 163

6.2.2.4 pH of the Reaction Medium 163

6.2.2.5 Temperature 163

6.2.3 Characterization Techniques for Evaluating the Size, Shape, and Stability of AgNPs 163

6.2.3.1 UV-vis Spectroscopy 164

6.2.3.2 Transmission Electron Microscopy 164

6.2.3.3 Scanning Electron Microscopy 165

6.2.3.4 Dynamic Light Scattering 165

6.2.3.5 X-ray Diffraction 165

6.2.3.6 Fourier Transform Infrared Spectroscopy 165

6.2.3.7 Zeta-potential Analysis 165

6.3 Antimicrobial Properties of AgNPs 165

6.3.1 Mechanisms of Action of AgNPs Against Plant Pathogens 166

6.3.1.1 Disruption of Cell Membrane Integrity 166

6.3.1.2 Generation of ROS 166

6.3.1.3 Interaction With Biomolecules 166

6.3.1.4 Inhibition of Signal Transduction 166

6.3.1.5 Release of Silver Ions 167

6.3.2 Effects of AgNPs on Pathogen Growth Inhibition and Disease Suppression in Crops 167

6.3.2.1 Bacterial Pathogens 167

6.3.2.2 Fungal Pathogens 167

6.3.2.3 Viral Pathogens 167

6.3.3 Potential Applications of AgNPs as Antimicrobial Agents in Crop Protection 168

6.3.3.1 Seed Treatment 168

6.3.3.2 Foliar Sprays 168

6.3.3.3 Soil Amendments 168

6.3.3.4 Postharvest Treatments 168

6.4 Seed Treatment With AgNPs 168

6.4.1 Effects of AgNP Seed Treatment on Germination Rates and Seedling Vigor 169

6.4.2 Influence of AgNPs on Seedling Establishment and Early Growth Stages 170

6.4.3 Optimization of AgNPs' Application Methods for Seed Treatment 170

6.5 Nutrient Uptake and Transport Enhancement 170

6.5.1 Role of AgNPs in Improving Nutrient Absorption by Crop Plants 171

6.5.2 Mechanisms of AgNP-mediated Nutrient Uptake and Transport Within Plants 171

6.5.2.1 Direct Uptake by Roots 171

6.5.2.2 Translocation Through Xylem 171

6.5.2.3 Influence on Cellular Mechanisms 172

6.5.2.4 Oxidative Stress and Defense Mechanisms 172

6.5.2.5 Formation of New Pores 172

6.5.2.6 Influence of Ag + Ions 172

6.5.3 Effects of AgNPs on Nutrient Availability in Soil and Nutrient Utilization Efficiency by Plants 172

6.5.3.1 AgNPs' Effects on Soil's Nutrient Availability 172

6.5.3.2 Plant Nutrient Utilization Efficiency 172

6.6 Stress Tolerance Improvement 173

6.6.1 Mechanisms of Stress Tolerance Enhancement 173

6.6.1.1 ROS Management 173

6.6.1.2 Methylglyoxal Detoxification 173

6.6.1.3 Enhanced Nutrient Uptake 173

6.6.1.4 Gene Expression Regulation 173

6.6.1.5 Physiological Enhancements 174

6.6.1.6 Hormonal Regulation 174

6.6.2 Mitigation of Abiotic Stresses by AgNPs 174

6.6.2.1 Drought Stress Mitigation 174

6.6.2.2 Salinity Stress Alleviation 174

6.6.2.3 Heavy Metal Stress Reduction 174

6.7 Promotion of Photosynthesis and Biomass Accumulation 175

6.7.1 Mechanisms of AgNPs-mediated Photosynthesis Promotion 175

6.7.1.1 Improved Chlorophyll Content 175

6.7.1.2 Enhanced Photosynthetic Efficiency 175

6.7.1.3 Increased Nutrient Uptake 175

6.7.1.4 Impact on Stomatal Conductance 175

6.7.2 Promotion of Biomass Accumulation 175

6.7.2.1 Root Growth Promotion 175

6.7.2.2 Shoot Growth Enhancement 176

6.7.2.3 Stress Tolerance Improvement 176

6.7.2.4 Influence of AgNP Treatment on Crop Yield 176

6.8 Root Development and Soil Interaction 176

6.8.1 Promotion of Root Growth and Development by AgNPs 176

6.8.2 Effects of AgNPs on Root Architecture, Root Surface Area, and Nutrient Uptake 177

6.8.3 Interactions Between AgNPs and Soil Components Affecting Plant Growth 177

6.9 Sustainable Agriculture Applications 178

6.9.1 Potential Benefits and Challenges of Integrating AgNPs Into Agricultural Practices 178

6.9.1.1 Potential Benefits 178

6.9.1.2 Challenges 179

6.9.2 Considerations for the Safe and Responsible Use of AgNPs in Crop Production 179

6.10 Conclusion 180

References 180

7 Effect of Nanomaterials on the Physiological Status of Crop Plants 187
Akanksha Rout, Komal Jalan, and Pradipta Banerjee

7.1 Introduction 187

7.2 Types of NPs 189

7.3 Synthesis and Characterization of NMs 195

7.3.1 Methods of Synthesis 195

7.3.2 Techniques for Characterization 195

7.3.3 NM-crop Plant Interaction 196

7.3.3.1 Method of Use of NMs 196

7.3.3.2 Uptake, Translocation, Accumulation, and Distribution 197

7.4 Physiological Effects on Crop Plants 198

7.4.1 Impact on Photosynthesis 198

7.4.1.1 Changes in Chlorophyll Content 198

7.4.1.2 Effects on Photosynthetic Rate and Efficiency 199

7.4.2 Growth and Development 199

7.4.2.1 Seed Germination and Root Development 199

7.4.2.2 Root and Shoot Growth and Biomass 200

7.4.3 Nutrient Uptake and Assimilation 201

7.5 Molecular and Biochemical Responses 202

7.5.1 Gene Expression and Signaling Pathways 202

7.5.1.1 Changes in Gene Expression Profiles 202

7.5.1.2 Key Signaling Pathways Affected 203

7.5.2 Enzymatic Activity and Stress Responses 204

7.5.2.1 Alterations in Enzymatic Activities 204

7.5.2.2 Responses to Oxidative and Abiotic Stress 207

7.6 Case Studies and Experimental Findings 209

7.6.1 Positive Effects 209

7.6.1.1 Enhanced Growth and Yield 209

7.6.1.2 Improved Resistance to Pests and Diseases 210

7.6.2 Negative Effects 211

7.6.2.1 Phytotoxicity and Growth Inhibition 211

7.6.2.2 Long-term Environmental Impact 212

7.7 Practical Applications and Future Prospects 214

7.7.1 Current Applications in Agriculture: Implementation and Realization 215

7.7.1.1 Nanofertilizers and Nutrient Delivery 215

7.7.1.2 Nanopesticides and Crop Protection 215

7.7.1.3 Nanosensors and Precision Agriculture 215

7.7.1.4 Stress Mitigation and Crop Resilience 215

7.8 Environmental and Safety Considerations 216

7.8.1 Ecotoxicology of NMs 216

7.8.1.1 Impact on Soil, Water, and Nontarget Organisms 216

7.8.2 Risk Assessment and Management 217

7.8.2.1 Preliminary Activity in Risk Ranking 217

7.8.2.2 Hazard Assessment 217

7.8.2.3 Dose-Response Assessment 218

7.8.2.4 Exposure Assessment 218

7.8.2.5 Risk Characterization 218

7.9 Conclusion 218

7.10 Future Prospects 220

References 220

8 Chitosan Nanoparticles as Nanosorbent for Potential Removal of Pollutant from the Soil 231
Abirami Geetha Natarajan, Kripa V, Jothi Ganesan M, and Philip Bernstein Saynik

8.1 Introduction 231

8.1.1 Background on Soil Remediation 231

8.1.1.1 Primary Causes of Soil Pollution 232

8.1.2 Need for Effective Remediation Techniques 233

8.2 Chitosan 234

8.2.1 Chemical Structure and Properties 234

8.2.1.1 Solubility 235

8.2.1.2 Viscosity 236

8.2.1.3 Thermal Properties 236

8.2.1.4 Biological Properties 236

8.2.1.5 Mechanical Properties 236

8.2.2 Synthesis and Modification 236

8.2.2.1 Chemical Method 237

8.2.2.2 Biological Method 237

8.2.3 Applications of Chitosan 238

8.3 Nanotechnology and Soil Remediation 239

8.3.1 Introduction to Nanotechnology 239

8.3.2 Types of Nano Adsorbents 240

8.3.2.1 Metallic Oxide Nanoparticles 241

8.3.2.2 Metallic Nanoparticles 241

8.3.2.3 Carbonaceous Nanoparticles 241

8.3.2.4 Other Nanoparticles 241

8.3.3 Benefits of Using Nano Adsorbent 241

8.3.3.1 High Surface Area 241

8.3.3.2 Enhanced Reactivity 241

8.3.3.3 Selectivity and Functionalization 242

8.3.3.4 Small Intraparticle Diffusion Distance 242

8.3.3.5 Versatility 242

8.3.3.6 Reduced Secondary Pollution 242

8.4 Chitosan Nano Adsorbent for Soil Remediation 242

8.4.1 Synthesis of Chitosan Nanoparticles 242

8.4.1.1 Ionic Gelation 242

8.4.1.2 Emulsification and Cross-linking 243

8.4.1.3 Emulsion Solvent Diffusion 243

8.4.1.4 Microemulsion 243

8.4.1.5 Reverse Micellization 243

8.4.1.6 Synthesis from Biocomposites 243

8.4.2 Functionalization of Chitosan Nanoparticles 244

8.4.2.1 Cross-linking 244

8.4.2.2 Grafting 244

8.4.2.3 Functional Group Addition 245

8.4.2.4 Electrostatic Interactions 245

8.4.2.5 Hydrogen Bonding 245

8.4.2.6 Hybrid Functionalization 245

8.5 Key Research Studies 245

8.5.1 Removal of Herbicides 246

8.5.1.1 Removal of Diquat 246

8.5.1.2 Removal of Atrazine 246

8.5.2 Pesticide Removal 247

8.5.3 Organic Pollution Degradation 247

8.5.3.1 Degradation of Trichloroethene 247

8.5.3.2 Oil Spill Remediation 248

8.5.4 Immobilization and Removal of Heavy Metals 248

8.5.4.1 Stabilization of Chromium in Soil 248

8.5.4.2 Decontamination of Cu 2+ from Soil 248

8.5.4.3 Removal of Cd(II) 249

8.5.4.4 Uranium (VI) Sorption 249

8.6 Advantages and Limitations 250

8.7 Future Perspective and Research Directions 250

8.8 Conclusion 251

References 252

9 Plant-based Nanomaterials for Remediation of Heavy Metal Pollution in Soil 257
Swagata Lakshmi Dhali and Moumita Pal

9.1 Introduction 257

9.2 Sources and Effects of HM Pollution in Soil 260

9.2.1 Arsenic (As) Pollution 261

9.2.2 Lead (Pb) Pollution 261

9.2.3 Cadmium (Cd) Pollution 261

9.2.4 Mercury (Hg) Pollution 262

9.2.5 Chromium (Cr) Pollution 262

9.2.6 Zinc (Zn) Pollution 262

9.3 Effects of HMs on Plants 263

9.4 Conventional Remediation Techniques of Heavy Metal Soil Pollution 264

9.4.1 Physical Methods 264

9.4.1.1 Soil Replacement 264

9.4.1.2 Immobilization/Solidification 264

9.4.1.3 Thermal Desorption 264

9.4.2 Chemical Methods 265

9.4.2.1 Washing 265

9.4.2.2 Biochar 265

9.4.2.3 Electrokinetic Method 265

9.4.3 Nanotechnology-assisted HM Remediation 265

9.4.4 Biological Methods 265

9.4.4.1 Phytoremediation 266

9.4.4.2 Microbial Remediation 266

9.4.4.3 Biosurfactants 266

9.5 Role of NPs in Soil Remediation 267

9.6 Plant-based Nanomaterials (PBNPs) for Soil Remediation 268

9.6.1 Overview of Different Types of Plant-Based Nanomaterials 269

9.6.1.1 Zero-valent Iron NPs 269

9.6.1.2 Carbon-based Nanomaterials 269

9.6.1.3 Copper NPs 269

9.6.1.4 Quantum Dots 270

9.6.1.5 Polymer NPs 270

9.6.2 Mechanism of Action of PBNPs 270

9.6.3 Examples of Successful Applications of Plant-based Nanomaterials in HM Remediation 271

9.6.3.1 Removal of Cr 272

9.6.3.2 Removal of Cr, Cd, and Pb 273

9.6.3.3 Removal of Pb 273

9.6.3.4 Mitigation of Cd Toxicity 273

9.6.3.5 Mitigating Arsenic Stress 274

9.7 Limitations of PBNPs 274

9.8 Conclusion 275

References 275

10 Carbon Quantum Dots for the Efficient Degradation of Organic Contaminants 283
Vikky Kumar Mahto, Moumita Pal, Ved Prakash, Ankit Kumar Singh, Abhishek Rai, Vipendra Kumar Singh, and Vikas Kumar Singh

10.1 Introduction 283

10.1.1 Structure of CQDs 284

10.2 Synthesis Method 285

10.2.1 Hydrothermal Method 286

10.2.2 Microwave Irradiation Method 286

10.2.3 Pyrolysis Method 286

10.2.4 Chemical Ablation Method 287

10.2.5 Electrochemical Carbonization 287

10.2.6 Arc Discharge Method 287

10.3 Organic Contaminants and Their Impacts on Plants and the Environment 288

10.3.1 Dyes 289

10.3.2 Polycyclic Aromatic Hydrocarbons 289

10.3.3 Pesticides and Insecticides 290

10.4 CQDs Application in Detection of Agrochemical Residues 291

10.4.1 Pesticides and Herbicides 291

10.4.2 Fungicides and Insecticides 293

10.5 Photocatalytic Degradation of Organic Contaminants Using CQDs 294

10.6 Conclusion and Future Outlook 295

Abbreviations 296

References 296

11 Carbon-based Nanomaterials: A Promising Tool for Sensing Toxic Metal Ions from Degraded Soil 305
Poorna Sneha M, Mohit Biju, Aishwarya Thomas, and Parvathi Balachandran

11.1 Introduction 305

11.1.1 Contamination of Soil by Toxic Metal Ions 305

11.1.2 Conventional Methods for the Detection of Toxic Metal Ions in Soil 307

11.1.3 Carbon-based Nanomaterials 307

11.2 Carbon-based Nanomaterials for Sensing the Purpose of a Sensing Tool 308

11.2.1 Allotropy of Carbon 308

11.2.2 Carbon-based Nanomaterials as an Alternative Strategy in Heavy Metal Sensing 308

11.2.3 Unique Properties of Carbon-based Nanomaterials 309

11.2.4 Types of Carbon-based Nanomaterials 309

11.2.4.1 Graphene 310

11.2.4.2 Nanodiamonds 310

11.2.4.3 Carbon Nanotubes 311

11.2.4.4 Fullerenes 311

11.2.4.5 Carbon Dots 311

11.3 Sensing Mechanisms of Toxic Metal Ions by Nanomaterials 313

11.3.1 Nanocarbon in Electrochemical Sensing 313

11.3.2 Existing Sensing Mechanisms Employed for Metal Ion Detection 313

11.3.2.1 Graphene-based Sensor for Metal Ion Detection 314

11.3.2.2 Nano-diamond-based Sensor for Metal Ion Detection 314

11.3.2.3 CNT-based Sensor for Metal Ion Detection 315

11.3.2.4 Other Nanocarbons for Metal Ion Detection 316

11.3.3 Factors Influencing the Sensitivity of Sensing Mechanisms of Carbon-based Nanomaterials 316

11.3.3.1 Materialistic Properties 316

11.3.3.2 Environmental Interactions 317

11.3.3.3 Functionalization Techniques 317

11.4 Applications Related to Metal Ion Detection by Carbon-based Nanomaterials 317

11.5 Challenges Associated with the Usage of Carbon-based Nanomaterials 320

11.6 Future Prospects of Carbon-based Nanomaterials 322

11.7 Conclusion 323

Abbreviations 324

References 324

12 Breaking Barriers of Conventional Disease Protection: Impact of Nanopathology 333
Puja Kumari, Sawant Shraddha Bhaskar, Jeetu Narware, and Abhijeet Ghatak

12.1 Introduction 333

12.2 Evolution of Nanotechnology in the Agriculture Field 335

12.3 Key Characteristics and Aspects of Nanotechnology 335

12.3.1 Key Characteristics 335

12.3.2 Aspects of Nanotechnology 336

12.3.2.1 Nanoscale Materials 336

12.3.2.2 Nanofabrication Techniques or NP Synthesis Techniques 336

12.3.2.3 Applications of Nanotechnology 337

12.4 Nanopathology 337

12.4.1 Early Detection and Diagnosis 337

12.4.2 Targeted Delivery of Agrochemicals 339

12.4.3 Advanced Plant Disease Management 339

12.4.3.1 Enhanced Resistance and Tolerance 339

12.4.4 Soil and Water Treatment 340

12.4.5 Biofortification and Plant Health 342

12.5 Challenges and Considerations 342

12.6 Conclusion 342

References 343

13 Role of Nanoparticles in Plant Disease Management 347
Umesh Kumar, Prince Kumar Singh, Parvati Madheshiya, and Indrajeet Kumar

13.1 Introduction 347

13.2 Types of NPs used in Plant Disease Management 348

13.3 Plant Disease Management Through NPs 351

13.3.1 Inhibition of Biofilm Formation 352

13.3.2 Cell Wall and Cell Membrane Destruction 352

13.3.3 Interaction with Biomolecules 353

13.4 Emerging Strategies for Mitigating Plant Diseases via NPs 354

13.4.1 Techniques to Better Seed Germination and Plant Development 355

13.4.2 Advancements in Food Processing and Packaging Technologies 355

13.4.3 Stress Tolerance as a Key to Optimizing Crop Productivity 356

13.4.4 Nano-biofertilizers: Revolutionizing Soil Enhancement 356

13.4.5 Next-generation Delivery Mechanisms for Fertilizers and Nutrients 357

13.4.6 NP-based Approaches to Bacterial Disease Management 357

13.4.7 Role of NPs in Managing Viral Infections 357

13.4.8 Utilization of NPs for Managing Fungal Infections 361

13.4.9 NP-based Platforms for Effective Insecticide Application 361

13.4.10 Enhancing Crop Performance Through Genetic Improvement 362

13.4.11 Harnessing Nanosensors for Smart Agricultural Practices 362

13.5 Mitigation Strategies for Addressing NP-related Risks 363

13.5.1 Interaction of NPs with Cellular Surfaces 363

13.5.2 Innovative Solutions for Sustainable Practices 363

13.5.3 Regulatory Strategies for Controlling NPs' Risks 364

13.6 Conclusion and Future Prospects 364

References 365

14 Challenges and Risk Assessment of Nanomaterial-based Chemicals Used for Sustainable Agriculture 377
Ranjani Ravikumar, Jayavardhini M, Sai Sidharth A, Vikky Rajulapati, and Philip Bernstein Saynik

14.1 Introduction 377

14.2 Nanofertilizers - Types 379

14.2.1 Action-based Nanofertilizers 379

14.2.2 Nutrient-based Nanofertilizers 381

14.2.3 Consistency-based Nanofertilizers 382

14.3 Risk Assessment 382

14.4 Uncertainties 383

14.5 Risk Management 384

14.6 Regulations and Safety Measures 385

14.6.1 United States 385

14.6.2 United Kingdom 386

14.6.3 Canada 386

14.6.4 Europe 387

14.6.5 Australia 388

14.6.6 Switzerland 388

14.6.7 Russia 388

14.6.8 China 388

14.6.9 South Korea 389

14.6.10 India 389

14.7 Ethical and Safety Concerns of Nanofertilizers and Nanopesticides 390

14.8 Conclusion 391

References 391

Index 395

最近チェックした商品