- ホーム
- > 洋書
- > ドイツ書
- > Mathematics, Sciences & Technology
- > Chemistry
- > miscellaneous
Full Description
Introduces students to nanoscale principles in molecular engineering, provides hands-on experience and stresses the interdisciplinary nature of this field.
Contents
Preface i
Units, Fundamental Constants, and Symbols iii
CHAPTER 1: THE REALM OF NANOSCIENCE AND MOLECULAR ENGINEERING 1
1.1 NANOSCIENCE AND MOLECULAR ENGINEERING 1
1.1.1 Trial-and-Error Approach and Deductive Rational Engineering 3
1.1.2 Combined Deductive Rational Engineering 5
1.1.3 Perception of our World - Apparent Unique Behaviors in Small Systems 6
1.2 PROPERTIES IN LOWER DIMENSIONALITIES 7
1.2.1 Flatland - The Uniqueness of Lower Dimensionality 8
1.3 MECHANICAL SYSTEM RESPONSES 9
1.3.1 Bulk Rheological Responses 9
1.3.2 Molecular Perspective of Mechanical Systems 11
1.4 DRIVING FORCES AND RESPONSES IN THERMAL TRANSPORT 15
1.4.1 Classical Thermal Transport 15
1.4.2 Thermal Conductivity Based on Classical Mechanics and Statistics 16
1.4.3 Size Effect on Thermal Energy Transfer 23
1.5 ELECTRONIC TRANSPORT OF LOWER DIMENSIONAL SYSTEMS 25
1.5.1 Drude Model Microscopic Model for Macroscopic Electron Transport 27
1.5.2 Characteristic Length Scales for Electron Transport 28
1.5.3 One-dimensional Electron Transport 31
1.6 ACOUSTIC TRANSPORT AND DIMENSIONALITY 35
1.7 CRITICAL MOLECULAR RESPONSE TIMES IN NANOCONSTRAINED SYSTEMS 37
1.7.1 Longitudinal Response to Stress: Maxwell Model 39
1.7.2 Shear Response to Stress 41
1.7.3 Dissipative Two-Dimensional Shear Response 44
1.8 MINIATURIZATION, SCALING, AND SYSTEM CONSTRAINTS 46
1.8.1 Phenomenological Shortcoming of the Scaling Analysis 47
1.8.1.1 Terminal Velocity of Liquid Droplets and Solid Particles 47
1.8.1.2 Interfacial Constraints and Nanocomposite Membrane Permeability 50
1.8.2 Dimensional Constraints and Thermal Conductivity 56
1.9 ORGANIZATION AND OUTLOOK FOR NANOSCIENCE AND NANOTECHNOLOGY 60
1.9.1 Classification of Nanoscience and Nanotechnology 60
STUDY PROBLEMS TO CHAPTER 1 63
CHAPTER 2: INTERFACIAL AND SIZE-CONSTRAINT SYSTEMS 72
2.1 OVERVIEW 72
2.2 VAN DER WAALS MOLECULAR INTERACTIONS 73
2.2.1 Van der Waals Interactions in Gases 73
2.2.1 Van der Waals Interactions in Liquids 78
2.3 INTERFACIAL EFFECTS ON LIQUIDS AND VAN DER WAALS SOLIDS 82
2.3.1 Simplistic Perspective Bulk and Surface Binding Energy 84
2.3.2 Interfacial Effect on Van der Waals Liquid Structures 85
2.3.2.1 Molecular Perspective of the Bulk Cohesion Energy 89
2.3.2.2 Molecular Perspective of the Adhesion Energy 91
2.3.3 Free Surface Effects on Van der Waals Solids 96
2.4 INTERFACIAL EFFECTS ON SPIN-COATED POLYMER FILMS 102
2.4.1 Bulk Mechanical Response, Polymer Mobility, and the Glass Transition 102
2.4.2 Polymer Chain Entanglement and Melt Viscosity 104
2.4.3 Interfacial Constraint on the Glass Transition in Thin Films 108
2.5 SIZE AND INTERFACIAL CONSTRAINTS IN METAL NANOCLUSTERS 114
2.5.1 Size Effect on Cohesion Energy and Surface Energy in Quasicrystals 117
2.6 TWO-DIMENSIONAL SYSTEMS AND SURFACE ENERGY 121
2.6.1 Surface Energy of Graphite 122
2.6.2 Surface energy of graphite's ultimate nanostructure Graphene 126
STUDY PROBLEMS TO CHAPTER 2: 128
CHAPTER 3: CONSTRAINED CONDENSED FLUID MOLECULAR SYSTEMS 137
3.1 MOLECULES AND PHASE PROPERTIES 137
3.1.1 Molecules and Molecular Interactions 137
3.1.2 Molecular Interactions and Van der Waals Equation of State 139
3.1.3 Gas Bulk Critical and Molecular Properties 144
3.2 METASTABLE LIQUID PHENOMENA 151
3.2.1 Metastable Liquids and Cavitation 152
3.2.2 Homogeneous Nucleation Process of Vapor Bubbles 155
3.2.3 Free Energy of Bubble Nucleation 156
3.2.4 Probability of Bubble Nucleation and Liquid Tensile Strength 159
3.3 HYDRAULIC TRANSPORT IN CAPILLARIES AND BOUNDARY CONDITIONS 163
3.3.1 Bending Stresses on Vascular Plants and Drought Embolism 164
3.3.2 Water Transport - Darcy's Law 167
3.3.3 Poiseuille Flow in Capillaries - Slip Boundary Condition 173
3.3.4 Molecular Conformations at Interfaces and Apparent Slip 181
3.3.5 Surface Roughness and Heterogeneous Slip 184
3.4 NANOCONDUIT FLOW - BOUNDARY LAYER MODEL AND NANOCAPILLARIES 188
3.4.1 Boundary Layer Model 188
3.4.2 Nanoconduit Flow through Carbon Nanotubes 193
3.5 MEMBRANE TRANSPORT 198
3.5.1 Osmosis 198
3.5.2 Water Purification and Desalination Reverse Osmosis 203
3.5.3 Transport Mechanisms through Solvent Swollen Polymer Membranes 205
3.5.4 Polymer Membranes and Nanoporous Transport 222
STUDY PROBLEMS TO CHAPTER 3: 225
CHAPTER 4: FIRST STEPS TOWARDS QUANTUM MECHANICS 233
4.1 THERMAL EMISSION: FROM BOLTZMANN TO QUANTUM DISTRIBUTION LAW 234
4.1.1 Blackbody Radiator 234
4.1.2 Rayleigh and Jeans - Standing Wave Model 238
4.1.3 Quantum Distribution Law - Planck's Law 241
4.1.4 Principle Distribution Laws in Nature 243
4.1.5 Microsystems and the Chemical Potential 248
4.2 FIRST VIEW INTO QUANTUM MECHANICS 250
4.2.1 Photoelectric Effects 251
4.2.2 Wave - Particle Duality 253
4.2.3 The Frank-Hertz Experiment 255
4.3 ATOM STRUCTURE AND A SIMPLE MODEL 256
4.3.1 The Electron 256
4.3.2 Hydrogen Emission Spectrum 258
4.3.3 Bohr Model of the Atom 260
4.3.4 Wave-Particle Duality and Dispersion Relation 262
4.4 WAVE AND PARTICLE INTERFERENCES AND PROBABILITY 265
4.4.1 Single Slit Interference 266
4.4.2 Double Slit Interference 267
4.4.3 Screen Intensity and Probability 269
4.4.4 Uncertainty Principle and Macroscopicity 270
4.5 QUANTUM WAVE THEORY, QUANTUM CONSTRAINTS AND UNCERTAINTY 272
4.5.1 One-Dimensional Schrödinger Wave Equation 273
4.5.2 Particle in One-Dimensional Box 275
4.5.3 Hydrogen Atom: Electron Wave Function and Energies 280
4.5.4 Quantum Entanglement and Quantum Computing 282
PROBLEM SECTION TO CHAPTER 4 286
CHAPTER 5: ELECTRON TRANSPORT AND ELECTRONIC STRUCTURE OF MOLECULES 295
5.1 ELECTRON TRANSPORT IN ONE-DIMENSIONAL QUANTUM WIRE 295
5.1.1 Quantum Wire Energy Components 296
5.1.2 Electron Scattering vs. Ballistic Transport 298
5.1.3 Single Mode Quantum Wire 299
5.1.4 Multimode Quantum and Quantum Conductance 301
5.2 ELECTRON TUNNELING 303
5.2.1 Finite 1D Potential Well 304
5.2.2 Tunneling Effect: Tunnel Current 307
5.2.3 Scanning Tunneling Microscopy 312
5.3 SINGLE ELECTRON DEVICE TECHNOLOGY 315
5.3.1 Energy Discretization of Nanoparticles 315
5.3.2 Single Electron Box 317
5.3.3 Single Electron Transistor 320
5.4 ELECTRONS, ENERGY STATES, AND DISTRIBUTION IN ATOMS 325
5.4.1 Hydrogen Atom: Solution of the Schrödinger Equation 325
5.4.2 Probability and Electron Distribution 327
5.4.3 Electron Orbital- Shape - Angular Momentum 329
5.4.4 Energy Degeneracies, Spin-Orbit Coupling and Fine Structure 330
5.4.5 Relativistic Effects 334
5.5 ELECTRON DISTRIBUTION AND BONDING IN MOLECULES 335
5.5.1 σ-Bonding 336
5.5.2 From to -Bonding 339
5.5.3 Hybrid Molecular Orbitals 342
5.6 MOBILE ELECTRONS 343
5.6.1 Delocalized Electrons 343
5.6.2 HOMO-LUMO Levels and Chromophores 347
5.6.3 Conjugated Polymers as LED and PV Materials 350
PROBLEM SECTION TO CHAPTER 5 356
CHAPTER 6: ELECTRONIC STRUCTURE OF MATTER 361
6.1 ELECTRONIC STATES AND TRANSPORT IN CONDENSED MATERIAL PHASES 361
6.1.1 Density of States 361
6.1.2 Electronic Bands and Bandgap 367
6.1.3 Semiconductor Bandgap Engineering 370
6.2 BACKGROUND ON DOPED INORGANIC SEMICONDUCTORS 373
6.2.1 Semiconductor Bandgap Engineering 373
6.2.2 Doped Semiconductors 375
6.2.3 Semiconductor p-n Junction 378
6.2.4 The Depletion Layer in the p-n Junction and External Bias 381
6.3 PHOTOVOLTAIC CELLS 386
6.3.1 P-N Junctions and Photovoltaics Basics 386
6.3.2 Solar Cell Efficiency 394
6.3.3 Photovoltaics Beyond Crystalline Silicon 400
PROBLEM SECTION TO CHAPTER 6: 400
CHAPTER 7: MOLECULAR MODES AND ENERGETIC PROPERTIES 405
7.1 MOLECULAR MODES 405
7.2 BOND VIBRATIONS IN MOLECULES 408
7.2.1 The Quantum Harmonic Oscillator 408
7.2.2 Infrared Spectrum of Diatomic Molecules in Light of the Quantum Harmonic Oscillator 412
7.2.3 Dissociation Energy and Ground-State Electronic Energy of Diatomic Molecules 413
7.2.4 Stiffness of Vibrating Bonds and Vibrational Bond Temperature 417
7.3 ROTATIONAL MOLECULAR MODE IN DIATOMIC MOLECULES 417
7.3.1 Molecular Rigid Rotor 417
7.3.2 Non-Rigid Diatomic Rotor 422
7.3.3 Rotational and Vibrational Energies 424
7.4 POLYATOMIC MOLECULES 425
7.4.1 Vibrational Modes of Polyatomic Molecules 426
7.4.2 Rotational Modes of Polyatomic Molecules 428
7.5 LATTICE VIBRATIONS - PHONONS 428
7.5.1 Harmonic Potential and Energies in Bulk Systems 429
7.5.2 Phonon Dispersion 430
7.5.3 The Acoustic Phonon Model Based on Debye 437
7.5.4 Thermal Conduction in Nanoconstrained Systems 441
PROBLEM SECTION TO CHAPTER 7: 444
APPENDIX 448
A.1 Acoustic Wave Equation 448
A.2 Homogeneous Second Order Differential Equations 449
A.3 Solution of the 1D Wave Equation in Cartesian Coordinates 450
A.4 Solution to the Schrödinger Wave Equation for Hydrogen 452