Targeting Protein-Protein Interactions for Drug Discovery (1. Auflage. 2025. 432 S. 24 Farbabb., 11 Tabellen. 244 mm)

個数:
電子版価格
¥20,307
  • 電子版あり

Targeting Protein-Protein Interactions for Drug Discovery (1. Auflage. 2025. 432 S. 24 Farbabb., 11 Tabellen. 244 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 416 p.
  • 言語 ENG
  • 商品コード 9783527353606

Full Description

Up-to-date reference surveying the latest advances in the structural understanding of protein-protein interactions and developments in drug discovery and therapeutics

Targeting Protein-Protein Interactions for Drug Discovery provides a systematic and comprehensive overview of protein-protein interactions (PPIs), reviewing foundational concepts, advanced methodologies, and emerging therapeutic strategies, reflecting the multidisciplinary nature of PPI research.

This book discusses computational methods for predicting PPI structures, with a special emphasis on protein docking and deep learning-based approaches, diverse chemical scaffolds for PPI modulation, including foldamers as inhibitors of aberrant PPIs and sulfonyl-γ-AApeptides as novel modulators, and the development and application of stapled peptides as modulators of intracellular PPIs, offering enhanced stability, binding affinity, and cellular permeability.

Readers will also find information on cyclic peptides, focusing on their unique conformational stabilization and therapeutic potential across a range of diseases, small molecule inhibitors targeting BCL-family proteins, revealing their potential in cancer therapy, molecular glues as activators for PPIs, categorized into degraders, stabilizers, and inhibitors based on their biological effects, and the targeting of the APC-Asef interaction for drug discovery in colorectal cancer therapy, offering a case study of specificity and clinical relevance.

Targeting Protein-Protein Interactions for Drug Discovery explores sample topics including:

Challenges and strategies of drug discovery targeting PPIs, including high-throughput screening and structure-based drug design
Fluorescence resonance energy transfer (FRET) technology, a powerful tool for real-time analysis of molecular interactions in live cells
Utility of mass spectrometry (MS) for large-scale mapping of PPI networks with high sensitivity and resolution
Proximity ligation assays (PLA) for detecting PPIs in situ, emphasizing spatial precision and adaptability for multiplexed detection
Application of surface plasmon resonance (SPR) for characterizing PPI specificity, affinity, and kinetics

Exploring both classical and novel approaches to PPI characterization and modulation, Targeting Protein-Protein Interactions for Drug Discovery offers a comprehensive reference for researchers aiming to unlock the therapeutic potential of PPIs along with educators and students engaged in the study of cellular mechanisms, drug discovery, and biotechnology.

Contents

Preface xiii

1 Exploring Protein-Protein Interactions: Concepts, Methods, and Implications 1
mi Zhou and Renxiao Wang

1.1 General Concepts of Protein-Protein Interactions 1

1.1.1 Definition of Protein-Protein Interactions 1

1.1.2 Structural Properties of Protein-Protein Interactions 2

1.1.3 Diverse Types of Protein-Protein Interactions 3

1.1.3.1 Enzyme-Substrate Interactions 3

1.1.3.2 Receptor-Ligand Interactions 3

1.1.3.3 Antigen-Antibody Interactions 3

1.1.3.4 Chaperone-Client Interactions 4

1.1.3.5 Scaffold Interactions 4

1.2 Functional Significance of Protein-Protein Interactions 4

1.2.1 Cellular Signal Transduction 5

1.2.2 Regulation of Gene Expression 6

1.2.3 Immune Response 8

1.2.3.1 Immune Cell Migration 8

1.2.3.2 T-Cell Antigen Recognition and Activation 8

1.2.3.3 B-Cell Antigen Recognition and Activation 9

1.2.4 Protein Degradation Pathway 9

1.2.5 Disease Mechanisms 10

1.2.5.1 Cancer 10

1.2.5.2 Neurodegenerative Diseases 11

1.2.5.3 Infectious Disease 11

1.3 Methods for Analyzing Protein-Protein Interactions 12

1.3.1 Experimental Methods 12

1.3.1.1 Structure Determination 12

1.3.1.2 Affinity, Kinetics, and Thermodynamics Measurement 13

1.3.1.3 Large-Scale PPI Network Mapping 13

1.3.2 Computational Methods 14

1.3.2.1 Sequence-Based Methods 14

1.3.2.2 Structure-Based Methods 15

1.3.2.3 Network-Based Methods 15

1.4 Implications of the Basic Research on Protein-Protein Interactions 16

1.4.1 Advancing Disease Understanding and Diagnosis 16

1.4.2 Driving Target-Based Drug Discovery 17

1.4.3 Fostering Innovations in Biotechnology 17

1.5 Conclusions and Perspectives 19

References 19

2 Overview of Drug Discovery Targeting PPI Systems 29
Hao Ma and Jian Zhang

2.1 Introduction 29

2.2 Fundamentals of Protein-Protein Interactions 30

2.2.1 Basic Principles of Protein Structure and Function 30

2.2.2 Types of Protein-Protein Interactions 32

2.2.3 Significance of PPIs in Cellular Processes and Disease Pathways 32

2.3 Challenges in Targeting PPI Systems 33

2.3.1 Structural Complexities of PPI Interfaces 33

2.3.2 Dynamics and Flexibility of Protein Complexes 34

2.3.3 Druggability Issues Associated with PPI Targets 35

2.4 Approaches in Drug Discovery Targeting PPI Systems 35

2.4.1 High-Throughput Drug Design (HTS) Methods 35

2.4.2 Structure-Based Drug Design (SBDD) Techniques 36

2.4.3 Fragment-Based Drug Discovery (FBDD) Strategies 37

2.4.4 Computational Methods for Predicting PPI Inhibitors 38

2.5 Case Studies and Success Stories 40

2.5.1 BCL Family 40

2.5.1.1 Bcl- 2 40

2.5.1.2 Bcl-xL 42

2.5.1.3 Mcl- 1 42

2.5.2 p53-MDM 2 43

2.5.3 XIAP/c-IAP 1 44

2.5.4 Cd40-cd40l 45

2.5.5 Cyclin-Dependent Kinase (CDK) 46

2.5.6 Pd-/pd-l 1 47

2.5.7 Hsp90-Cdc 37 48

2.5.8 Menin-MLL 48

2.5.9 Kras-SOS 1 49

2.5.10 Keap1-Nrf2 PPI 49

2.6 Conclusion 51

References 53

3 Fluorescence Resonance Energy Transfer Technology and its Applications 61
Jing-Yu Lang

3.1 Introduction 61

3.2 Mechanism of FRET 61

3.3 Applications of FRET 63

3.3.1 Molecular Interactions 63

3.3.2 Conformational Changes 64

3.3.3 Cellular Imaging 64

3.3.4 Drug Discovery 64

3.3.5 Clinical Diagnosis 65

3.3.6 Structural Biology 66

3.3.7 Materials Science 66

3.3.8 Environmental and Agricultural Sciences 66

3.4 Advantages and Limitations 67

3.5 Recent Advances 68

3.6 Conclusion 70

Acknowledgements 71

References 71

4 Dissect Protein Interactions Using Mass Spectrometry 75
Bin Liao and Liang Zhang

4.1 Introduction 75

4.2 Affinity Purification Coupled with Mass Spectrometry (AP-MS) 76

4.3 Proximity Labeling 81

4.4 Cross-linking Mass Spectrometry (XL-MS) 84

4.5 Co-fractionation Coupled with Mass Spectrometry (CF-MS) 88

4.6 Thermal Proximity Co-aggregation (TPCA) 90

4.7 Limited Proteolysis-Mass Spectrometry (LiP-MS) 93

4.8 Conclusion and Outlook 95

Acknowledgements 96

References 96

5 Detection of Protein-Protein Interactions In Situ via Proximity Ligation Assay 105
Xinyue Zhou and Peng Zou

5.1 Introduction 105

5.2 Implementations of Proximity Ligation Assay 106

5.3 Applications of PLA for Detecting Protein-Protein Interactions 108

5.4 Conclusions and Outlooks 109

Acknowledgments 110

References 110

6 Application of Surface Plasmon Resonance in the Characterization of Protein-Protein Interactions 115
Yuanyuan Xie and Jianrong Xu

6.1 Introduction 115

6.1.1 Protein-Protein Interactions 115

6.1.2 Principle of Surface Plasmon Resonance 115

6.1.3 Advantage of SPR 116

6.2 Applications of SPR Assays in PPIs Characterization 117

6.2.1 SPR Application in Binary PPI Systems 117

6.2.1.1 SPR Assay in Verifying and Measuring PPIs 117

6.2.1.2 SPR-Guided Screening and Optimization in Drug Discovery 120

6.2.1.3 SPR in the Validation of PPI Interface 123

6.2.2 SPR Application in Ternary PPI Systems 126

6.2.2.1 SPR-Based Epitope Competition Assays 126

6.2.2.2 SPR-Based Drug Discovery of PPI Modulators 128

6.2.2.3 SPR Applications in Targeted Protein Degradation 130

6.3 Advantages and Limitations of SPR Application for PPIs 131

6.4 Future Directions 132

References 133

7 Computational Methods for Protein-Protein Interactions 139
Hao Li, Yurui Li, and Sheng-You Huang

7.1 Introduction 139

7.2 Protein-Protein Docking 140

7.2.1 Sampling 142

7.2.1.1 Traditional Search Algorithms 142

7.2.1.2 Deep Learning-Based Search Algorithms 144

7.2.2 Scoring 145

7.2.2.1 Traditional Scoring Function 145

7.2.2.2 Deep Learning-Based Scoring Function 146

7.2.3 Template-based Docking 147

7.3 End-to-end Structure Prediction 148

7.4 CAPRI Experiments 151

7.4.1 Casp13-capri 152

7.4.2 Casp14-capri 152

7.4.3 Casp15-capri 153

7.5 Challenges and Future Directions 154

Acknowledgments 155

Author Contributions 155

References 155

8 Foldamers as Inhibitors of Aberrant Protein-Protein Interactions 163
Nicholas H. Stillman, Ryan A. Dohoney, Charles Z. Baysah, and Sunil Kumar

8.1 Introduction 163

8.2 The Evolution of Hamilton's Oligopyridylamides 164

8.3 Limitations of a Tedious Synthetic Route 165

8.4 OPs as Antagonists of Neurodegeneration 166

8.5 OPs Inhibit HIV Infection 168

8.6 OPs Targeting Type II Diabetes 169

8.7 OPs Targeting and Reactivating Mutant Protein in Cancer 171

8.8 Novel Synthesis of OPs and Alzheimer's Disease 173

8.9 2d-fast 174

8.10 OQ Foldamers - Structure and Discovery 181

8.11 Synthesis of OQ Foldamers 182

8.12 OQs as Modulators of Type II Diabetes-Related aPPIs 183

8.13 Mechanistic Insights into OQ Manipulation of aPPIs 186

8.14 Chemical Diversity and Structure Modulate Efficacy of OQs 188

8.15 Modulation of Alzheimer's Disease-Related Aβ 189

8.16 OQs for the Modulation of Synucleinopathies 191

8.17 Epilogue 194

Acknowledgement 194

References 195

9 Application of Sulfonyl-γ-AApeptides for PPI Drug Discovery 205
Jarais Fontaine and Jianfeng Cai

9.1 Introduction 205

9.2 Application of Sulfonyl-γ-AApeptides 206

9.2.1 Modulation of PPIs Involved in Cancer 206

9.2.1.1 Inhibition of β-catenin/B-cell lymphoma 9 PPIs 206

9.2.1.2 p53-MDM2/MDMX PPIs Inhibitor 208

9.2.1.3 HIF-1α PPI's Inhibitor 209

9.2.2 Anti-Viral 210

9.2.2.1 HIV Fusion Inhibitor 210

9.2.2.2 Pan-Coronavirus Fusion inhibitor 212

9.2.3 Aβ-Oligomerization Modulation 213

9.2.4 Diabetes Therapeutics 216

9.3 Future Directions/Conclusion 216

Acknowledgments 217

References 217

10 Introduction of the Application of Stapled Peptides in Protein-Protein Interactions Drug Discovery and Their Successful Examples 219
Maxwell J. Austin and Danny Hung-Chieh Chou

10.1 Introduction 219

10.1.1 Stapled Peptides as a Solution to PPI Challenges 219

10.1.2 Growing Importance of PPIs in Drug Discovery 220

10.1.3 Early Development and Success of Stapled Peptides 220

10.1.4 Overview of the Chapter 221

10.2 Stapled Peptides: Structure Features and Benefits 221

10.2.1 Importance of α-Helical Structures in PPIs 221

10.2.2 Designing Stapled Peptides: Mechanism of Stapling 221

10.2.3 Additional Stapling Strategies 222

10.2.3.1 Lactamization Between Lysine and Glutamate/Aspartate 222

10.2.3.2 Azide-Alkyne Cycloaddition 223

10.2.3.3 C—H Activation 224

10.2.3.4 Cys-Cys Initiated Stapling Strategy 224

10.2.3.5 Tyrosine Stapling 224

10.2.4 Advantages of Stapled Peptides in Drug Discovery 225

10.2.4.1 Enhanced Proteolytic Stability 225

10.2.4.2 Improved Cell Permeability 226

10.2.4.3 Ability to Target Previously "Undruggable" PPIs 226

10.2.4.4 Specificity and Affinity Considerations 227

10.3 Successful Applications of Stapled Peptides in Drug Discovery 227

10.3.1 Targeting the MDM2-p53 Interaction 227

10.3.2 Targeting BCL-2 Family Proteins 228

10.3.3 Targeting the β-Catenin/TCF Interaction 229

10.3.4 Infectious Diseases 230

10.3.5 Clinical Progress and Future Directions 231

10.4 Challenges and Limitations 232

10.4.1 Manufacturing and Cost Considerations 232

10.4.2 Delivery Issues: Overcoming Biological Barriers 232

10.4.3 Off-Target Effects and Safety Concerns 233

10.4.4 Resistance Mechanisms 233

10.5 Future Directions 234

10.5.1 Expansion into New Disease Areas 234

10.5.2 Integration with Other Therapeutic Modalities 235

10.5.3 Emerging Delivery Technologies 235

10.5.4 Summary 236

Acknowledgments 237

References 237

11 Cyclic Peptides for PPI Drug Discovery 243
Hong-Gang Hu and Xiang li

11.1 Introduction 243

11.2 α-Helix Cyclic Peptides (Stapled Peptides) 244

11.2.1 Antitumor Stapled Peptides 245

11.2.2 Antiviral Stapled Peptides 251

11.2.3 Anti-osteoporosis Stapled Peptides 252

11.2.4 Anti-inflammation Stapled Peptides 253

11.2.5 Anti-diabetes Stapled Peptides 253

11.3 β-Hairpin Cyclic Peptides 253

11.4 Macrocyclic Peptides 255

11.5 Summary and Outlook 255

References 256

12 Small Molecule Inhibitors Targeting Protein-Protein Interactions in the BCL Protein 263
Wenhua Zhu, Yangbo He, Gang Chen, and Di Zhu

12.1 Introduction 263

12.2 Inhibitors of BCL-2 Family Antiapoptotic Proteins 264

12.2.1 Members and Structure of BCL-2 Family Proteins 264

12.2.2 Binding Sites and Key Interactions of BCL-2 Family Proteins 266

12.2.3 Antiapoptotic Proteins of the BCL-2 Family and Cancer 267

12.2.4 BCL-2 Family Antiapoptotic Protein Inhibitors 267

12.2.4.1 Selective Bcl-2/Bcl-xL Inhibitors 268

12.2.4.2 Selective Mcl-1 Inhibitor 280

12.2.4.3 Compounds 54-59 292

12.3 Inhibitors of β-catenin/BCL 9 300

12.3.1 Physiological Functions of BCL 9 300

12.3.2 β-catenin/BCL9 PPI 300

12.3.3 Targeting β-catenin/BCL9 Small Molecule Inhibitors 301

12.3.3.1 Natural Products and Their Derivatives 301

12.3.3.2 Phenyl-piperidine Derivatives 303

12.3.3.3 3-(4-fluorophenyl)-N-phenylbenzamide Derivatives 305

12.3.3.4 Other β-catenin/BCL9 Small Molecule Inhibitors 307

12.4 Targeting BCL-6 Small Molecule Inhibitors 307

12.4.1 Biological Functions of BCL 6 307

12.4.2 Structural Characteristics of the BCL6 BTB/POZ Domain 308

12.4.3 BCL6-targeted Diseases 309

12.4.4 BCL6 Inhibitor 310

12.4.4.1 79-6, FX1 and AP-4- 287 310

12.4.4.2 BI3812 and TMX- 2164 310

12.4.4.3 BCL6-i and Compound 107 316

12.4.4.4 Compounds 109, 111, WK500B, and GSK 137 316

12.4.4.5 CCT369347, CCT372064, and OICR 12694 317

12.5 BCL-3 Inhibitors 318

12.5.1 Structural Characteristics of BCL- 3 318

12.5.2 Biological Functions of BCL- 3 318

12.5.3 BCL-3/P50 Inhibitors 320

12.6 BCL-10 Inhibitors 320

12.6.1 Biological Functions of BCL- 10 320

12.6.2 Structural Characteristics of BCL- 10 321

12.6.3 BCL-10 and Cancer 322

12.7 Summary 322

References 323

13 Molecular Glues as Activators for PPI 343
Xiangbing Qi

13.1 Introduction 343

13.1.1 Significance of PPI in Biology and Disease 343

13.1.2 Opportunities and Challenges for PPI Drug Discovery 344

13.1.3 Four Classes of PPI Modulators 344

13.2 Molecular Glues as Orthosteric PPIStabilizers/Activators 347

13.2.1 Design Principles of MG 347

13.2.2 Classification of MGs 347

13.2.2.1 MG Degraders (MGDs) 347

13.2.2.2 MG Stabilizers 354

13.2.2.3 MG Inhibitors 357

13.3 Methods for MG Discovery 358

13.3.1 Modifications of E3 Ligands: Discovery of New CRBN Ligands 360

13.3.2 Phenotype-Based Screening 361

13.3.2.1 Scalable Chemical Profiling 361

13.3.2.2 Proteomics-Based Screening 362

13.3.3 Target-Based Screening 363

13.3.3.1 HTS for PPI Stabilizers 363

13.3.3.2 Rational Design: Discovery of KRAS-CYPA Molecular Glue 363

13.4 Conclusions and Outlook 364

Contributors 364

References 364

14 Targeting APC-Asef Protein-Protein Interaction for Drug Discovery in Colorectal Cancer Therapy 373
Jie Zhong and Xiuyan Yang

14.1 Introduction 373

14.2 Structural Insights into APC-Asef Interaction 375

14.3 Current APC-Asef Inhibitors 376

14.3.1 Peptides 376

14.3.1.1 Minimal Asef Sequence for APC 376

14.3.1.2 MAI-150-Derived Peptidomimetic Inhibitors 377

14.3.1.3 MAI-203 as the First-in-Class Inhibitor of APC-Asef PPI with Anti-CRC Migration Activity 377

14.3.1.4 Intramolecular Hydrogen Bond Strategy Leading to the Best-in-Class Inhibitor MAI-400 379

14.3.1.5 A More Sensitive FP Assay Led to the Discovery of a Highly Efficient and Potent Inhibitor, MAI-516 380

14.3.1.6 Computer-Aided Design of Tripeptide Inhibitors Disrupting APC-Asef Interaction 381

14.3.2 Small Molecule Inhibitors of APC-Asef PPI 381

14.4 A More Sensitive FP Method for Identifying Highly Active APC-Asef Inhibitors 382

14.5 Conclusions and Outlook 383

References 385

15 Computational Methods Applied to Drug Discovery of Protein-Protein Interaction Systems 389
Zhiyong Gu and Xi Cheng

15.1 Introduction 389

15.2 Computational Methods for PPI Prediction 390

15.2.1 PPI Network Mapping 390

15.2.2 Protein Complex Prediction 394

15.2.3 PPI Modulator Discovery 395

15.2.3.1 Small Molecules 397

15.2.3.2 Peptides and Protein Mimics 400

15.2.3.3 Antibodies 401

15.3 Conclusions and Outlook 401

References 402

Index 409

最近チェックした商品