Complex-shaped Metal Nanoparticles : Bottom-Up Syntheses and Applications (2012. XXIV, 558 p. w. 35 col. figs. 245 mm)

電子版価格
¥28,629
  • 電子版あり

Complex-shaped Metal Nanoparticles : Bottom-Up Syntheses and Applications (2012. XXIV, 558 p. w. 35 col. figs. 245 mm)

  • ただいまウェブストアではご注文を受け付けておりません。 ⇒古書を探す
  • 製本 Hardcover:ハードカバー版/ページ数 600 p.
  • 商品コード 9783527330775

Full Description

The past few years have witnessed the development of non-spherical metal nanoparticles with complex morphologies, which offer tremendous potential in materials science, chemistry, physics and medicine. Covering all important aspects and techniques of preparation and characterization of metal nanoparticles with controlled morphology and architecture, this book provides a sound overview - from the basics right up to recent developments. Renowned research scientists from all over the world present the existing knowledge in the field, covering theory and modeling, synthesis and properties of these nanomaterials. By emphasizing the underlying concepts and principles in detail, this book enables researchers to fully recognize the future research scope and the application potential of the complex-shaped metal nanoparticles, inspiring further research in this field.

Contents

Foreword VII Preface XVII List of Contributors XIX Metal Nanoparticles of Complex Morphologies: A General Introduction 1 References 5 1 Colloidal Synthesis of Noble Metal Nanoparticles of Complex Morphologies 7 Tapan K. Sau and Andrey L. Rogach 1.1 Introduction 7 1.2 Classification of Noble Metal Nanoparticles 8 1.3 Synthesis Methodologies 9 1.3.1 Chemical Reduction Method 9 1.3.1.1 Spatially Confined Medium/Template Approach 10 1.3.1.2 Preformed Seed-Mediated Synthesis 15 1.3.1.3 High-Temperature Reduction Method 19 1.3.2 Chemical Transformation Method 19 1.3.2.1 Galvanic Displacement Method 19 1.3.2.2 Etching Method 21 1.3.3 Electrochemical Synthesis 22 1.3.4 Photochemical Method 23 1.3.5 Biosynthesis 24 1.3.6 Postpreparation Separation 25 1.4 Characterization 25 1.5 Thermodynamic Kinetic Factors and Particle Morphology 29 1.5.1 Nucleation and Growth 29 1.5.1.1 Homogeneous and Heterogeneous Nucleations 29 1.5.1.2 Defects in Seed Crystal 37 1.5.1.3 Growth of Seed Crystal 41 1.5.2 Reaction Parameters 43 1.5.2.1 Reactants and Their Concentrations 43 1.5.2.2 Additives/Impurities 48 1.5.2.3 Solvent, pH, and Temperature 50 1.6 Mechanisms of Morphology Evolution 51 1.6.1 One-Dimensional Nanoparticle Formation 52 1.6.1.1 Nanorod Formation 52 1.6.1.2 Nanobipyramid Formation 57 1.6.2 Two-Dimensional Nanoparticle Formation 57 1.6.3 Three-Dimensional Polyhedral Shape Evolution 62 1.6.4 Epitaxial/Core Shell/Heterodimer/Overgrowth Mechanism 64 1.6.5 Branched Nanoparticle Formation 67 1.6.6 Hollow/Porous Nanoparticle Formation 70 1.7 Conclusions and Outlook 72 References 73 2 Controlling Morphology in Noble Metal Nanoparticles via Templating Approach 91 Chun-Hua Cui and Shu-Hong Yu 2.1 Introduction 91 2.2 Galvanic Replacement Method 92 2.2.1 Synthesis of Quasi-Zero-Dimensional Nanoparticles 93 2.2.2 Synthesis of One-Dimensional Nanostructures 97 2.3 Hard Template-Directed Method 99 2.3.1 Porous Membrane Template-Directed Method 100 2.3.2 Pattern Template-Directed Method 104 2.4 Soft Template-Directed Method 106 2.4.1 Micelle Template-Directed Synthesis 106 2.4.2 Selective Adsorption-Directed Synthesis 109 2.5 Conclusions and Outlook 112 References 113 3 Shape-Controlled Synthesis of Metal Nanoparticles of High Surface Energy and Their Applications in Electrocatalysis 117 Na Tian, Yu-Hua Wen, Zhi-You Zhou, and Shi-Gang Sun 3.1 Introduction 117 3.2 Fundamentals and Background 119 3.2.1 Thermodynamics of Crystallization: Principles and Rules 119 3.2.1.1 Equilibrium Shape of a Crystal 119 3.2.1.2 Nucleation 120 3.2.1.3 Three-Dimensional Growth of a Crystal on Substrate 122 3.2.1.4 Two-Dimensional Nuclei Theory 124 3.2.2 Correlation of the Shape of Crystal and Its Surface Structure 125 3.3 Progress in Shape-Controlled Synthesis of Metal Nanoparticles of High Surface Energy and Their Applications 127 3.3.1 Electrochemistry Route 128 3.3.1.1 Pt and Pd Nanoparticles 128 3.3.1.2 Fe Nanoparticles 137 3.3.2 Wet Chemistry Route 137 3.3.2.1 Au Nanoparticles 139 3.3.2.2 Pd and Pd Au Nanoparticles 141 3.3.2.3 Pt Nanoparticles 144 3.4 Theoretical Simulations of Structural Transformation and Stability of Metal Nanoparticles with High Surface Energy 148 3.4.1 Brief Description of Theoretical Calculation Methods 148 3.4.1.1 First-Principles Methods 148 3.4.1.2 Molecular Dynamics Methods 149 3.4.1.3 Predictions and Limitations of Theoretical Calculations 149 3.4.2 Theoretical Study of Metal Nanoparticles of High Surface Energy 150 3.4.2.1 Pt Nanoparticles 151 3.4.2.2 Pd Nanoparticles 153 3.4.2.3 Au Nanoparticles 155 3.4.2.4 Fe Nanoparticles 157 3.5 Conclusions 160 References 162 4 Shape-Controlled Synthesis of Copper Nanoparticles 167 Wen-Yin Ko and Kuan-Jiuh Lin 4.1 Introduction 167 4.1.1 Zero-Dimensional Nanostructures 167 4.1.2 One-Dimensional Nanostructures 168 4.1.3 Two-Dimensional Nanostructures 169 4.1.4 Complex (3D) Nanostructures 170 4.2 Metallic Copper 172 4.2.1 Significance and Challenges 172 4.2.2 Shape Control of Cu Nanoparticles 172 4.3 Electrodeposition Method for Growth of Cu Nanoparticles of Different Shapes 174 4.3.1 Synthesis and Growth Mechanism of Tetrahedral Metallic Cu 174 4.3.1.1 Synthesis 174 4.3.1.2 Growth Mechanism 177 4.3.2 Synthesis of Cu Nanoparticles of Cubic and Multipod Shapes 179 4.4 Conclusions 179 References 181 5 Size- and Shape-Variant Magnetic Metal and Metal Oxide Nanoparticles: Synthesis and Properties 183 Kristen Stojak, Hariharan Srikanth, Pritish Mukherjee, Manh-Huong Phan, and Nguyen T. K. Thanh 5.1 Introduction 183 5.2 Synthesis of Size- and Shape-Variant Ferrite Nanoparticles 184 5.2.1 Thermal Decomposition 184 5.2.1.1 Surface Functionalization 185 5.2.1.2 Size and Shape Variance 187 5.2.2 Chemical Coprecipitation 189 5.2.3 Solvothermal Technique 191 5.2.4 Microemulsion Technique 192 5.3 Other Magnetic Nanoparticles: Synthesis, Size Variance, and Shape Variance 194 5.4 Magnetism in Ferrite Nanoparticles 196 5.4.1 Crystal Structure and Spin Configuration 196 5.4.2 Critical Size and Superparamagnetism 197 5.4.3 Size-Dependent Magnetic Properties 198 5.4.3.1 Static Magnetic Properties 198 5.4.3.2 Dynamic Magnetic Properties 203 5.4.4 Shape-Dependent Magnetic Properties 205 5.5 Magnetic Nanoparticles for Biomedical Applications 207 5.5.1 Targeted Drug Delivery 207 5.5.2 Hyperthermia 208 5.5.3 MRI Contrast Enhancement 208 5.6 Concluding Remarks and Future Directions 210 References 212 6 Structural Aspects of Anisotropic Metal Nanoparticle Growth: Experiment and Theory 215 Tulio C.R. Rocha, Herbert Winnischofer, and Daniela Zanchet 6.1 Introduction 215 6.2 Atomic Packing on Metal NPs 217 6.3 Structural Aspects in the Anisotropic Growth: The Silver Halide Model 221 6.4 Experimental Requisites to Produce Anisotropic NPs 226 6.5 Concluding Remarks 234 References 235 7 Colloids, Nanocrystals, and Surface Nanostructures of Uniform Size and Shape: Modeling of Nucleation and Growth in Solution Synthesis 239 Vladimir Privman 7.1 Introduction 239 7.2 Burst Nucleation Model for Nanoparticle Growth 242 7.3 Colloid Synthesis by Fast Growth 247 7.4 Improved Models for Two-Stage Colloid Growth 251 7.5 Particle Shape Selection in Solution Synthesis 254 7.6 Applications for Control of Morphology in Surface Structure Formation 261 7.7 Summary 263 References 264 8 Modeling Nanomorphology in Noble Metal Particles: Thermodynamic Cartography 269 Amanda S. Barnard 8.1 Introduction 269 8.2 Ab Initio Simulation of Small Gold Nanoclusters 271 8.3 Ab Initio Simulation of Gold Nanoparticles 272 8.4 Thermodynamic Cartography 276 8.4.1 Size-Dependent Melting 281 8.4.2 Mapping the Morphology of Nanogold 282 8.5 Gold Nanorods and Dimensional Anisotropy 285 8.5.1 Preferred Shape and Termination Geometry 286 8.5.2 Aspect Ratio and Dependence on Temperature 289 8.5.3 Twinning in Gold Nanorods 291 8.6 Comparison with Platinum and Inclusion of Surface Defects 294 8.7 Conclusions 298 References 300 9 Platinum and Palladium Nanocrystals: Soft Chemistry Approach to Shape Control from Individual Particles to Their Self-Assembled Superlattices 305 Christophe Petit, Caroline Salzemann, and Arnaud Demortiere 9.1 Introduction 305 9.2 Influence of the Chemical Environment on the NC Shape 306 9.2.1 How the Capping Agents Tune the Shape and the Size of Metal NCs: A Comparison of Two-Liquid Synthesis Methods 306 9.2.1.1 Effect of the Capping Agent on the Shape of Platinum NCs 308 9.2.1.2 Effect of the Capping Agent on the Size of Platinum NCs 310 9.2.1.3 Effect of the Capping Agent on the Size and Shape of Palladium NCs Made in Reverse Micelles 312 9.2.2 Role of the Strength of the Capping Agent Metal Bond 315 9.2.3 Role of the Gas Dissolved in a Solvent 318 9.3 Synthesis of Platinum Nanocubes 321 9.4 Supercrystals Self-Assembled from Nonspherical NCs 323 9.5 Conclusions 333 References 335 10 Ordered and Nonordered Porous Superstructures from Metal Nanoparticles 339 Anne-Kristin Herrmann, Nadja C. Bigall, Lehui Lu, and Alexander Eychmuller 10.1 Introduction 339 10.2 Metallic Porous Superstructures 341 10.2.1 Ordered Porous Metallic Nanostructures 341 10.2.1.1 Preparation 342 10.2.1.2 Applications in Catalysis and as SERS Substrates 345 10.2.2 Nonordered Porous Superstructures on Biotemplates 347 10.2.3 Freestanding Nonordered Porous Superstructures 351 10.3 Summary and Outlook 355 References 355 11 Localized Surface Plasmons of Multifaceted Metal Nanoparticles 361 Cecilia Noguez and Ana L. Gonzalez 11.1 Introduction 361 11.2 Light Absorption and Scattering by Metal NPs 363 11.2.1 Light Absorption Mechanisms 366 11.2.2 Surface Plasmon Resonances 367 11.2.3 Dielectric Function of Metal NPs 368 11.3 Spectral Representation Formalism 371 11.3.1 General Trends of SPRs of Metal NPs in Vacuum 373 11.3.2 General Trends of SPRs of Metal NPs in a Host Medium 374 11.4 Spherical and Spheroidal NPs 375 11.4.1 Nanospheres 375 11.4.2 Nanospheroids 378 11.4.3 Multishell NPs 379 11.5 Discrete Dipole Approximation 380 11.6 SPRs in Multifaceted Morphologies 383 11.6.1 Cubic Morphology 383 11.6.2 Decahedral Morphology 385 11.6.3 Elongated NPs with Complex Morphologies 388 11.7 Summary 390 References 391 12 Fluorophore Metal Nanoparticle Interactions and Their Applications in Biosensing 395 Thomas A. Klar and Jochen Feldmann 12.1 Introduction 395 12.2 Fluorescence Decay Rates in the Vicinity of Metal Nanostructures 395 12.2.1 Physical Concept 395 12.2.2 Oligonucleotide Sensing 401 12.2.3 Protein Sensors 404 12.2.3.1 Unspecific Protein Sensors 405 12.2.3.2 Immunoassays 405 12.2.3.3 Aptamer-Based Sensing 407 12.2.4 Sensing Small Molecules (Haptens) 409 12.2.5 Ion Sensing 411 12.2.6 Fluorescence Enhancement Sensors 411 12.3 Shaping of Fluorescence Spectra by Metallic Nanostructures 412 12.4 Shaping of Extinction Spectra by Strong Coupling 417 12.4.1 Physical Concept 417 12.4.2 Biosensor Applications 419 12.5 Specific Issues on the Interaction of Fluorophores with Complex-Shaped Metallic Nanoparticles 419 12.5.1 Spectral Tunability 420 12.5.2 Encoding 421 References 422 13 Surface-Enhanced Raman Scattering Using Complex-Shaped Metal Nanostructures 429 Frank Jackel and Jochen Feldmann 13.1 Introduction 429 13.2 Basics 430 13.2.1 Raman Scattering 430 13.2.2 Surface-Enhanced Raman Scattering 431 13.3 Modeling 435 13.4 SERS Substrate Preparation 437 13.5 Fundamental Studies 439 13.5.1 Morphology Dependence 439 13.5.2 SERS with Single Particles 441 13.5.3 Single-Molecule SERS 443 13.5.4 Enhancement Mechanism 444 13.6 Applications 447 13.7 Conclusions and Outlook 448 References 449 14 Photothermal Effect of Plasmonic Nanoparticles and Related Bioapplications 455 Alexander O. Govorov, Zhiyuan Fan, and Alexander B. Neiman 14.1 Introduction 455 14.2 Theory of the Photothermal Effect for Single Nanoparticles and for Nanoparticle Clusters 458 14.2.1 Plasmonic Model 459 14.2.2 Mie Theory for a Single Spherical Nanoparticle 460 14.2.3 Effective Medium Approaches for the Dielectric Function and for the Thermal Conductivity of a Nanoparticle Cluster 462 14.2.4 Optically Generated Temperature 462 14.2.5 Mie Theory for Nanoparticles and Clusters 463 14.2.5.1 Small Spherical Nanoparticles and Clusters 463 14.2.5.2 Large Clusters 464 14.3 Physical Examples and Applications 467 14.3.1 Melting of the Matrix 467 14.3.2 Heating from a Collection of Nanoparticles: Heat Accumulation Effect 468 14.4 Application to Biological Cells: Control of Voltage Cellular Dynamics with Photothermal Actuation 471 14.5 Summary 474 References 474 15 Metal Nanoparticles in Biomedical Applications 477 Jun Hui Soh and Zhiqiang Gao 15.1 Introduction 477 15.2 Biosensing and Diagnostics 478 15.2.1 Localized Surface Plasmon Resonance Detection 479 15.2.2 Colorimetric Detection 482 15.2.3 Surface-Enhanced Raman Scattering Detection 487 15.2.4 Electrochemical and Electrical Detection 491 15.2.5 Magnetic Resonance-Based Detection 495 15.3 Therapeutic Applications 498 15.3.1 Applications in Tissue Engineering 499 15.3.2 Application in Drug Delivery 501 15.3.3 Cancer Therapy 504 15.4 Bioimaging 508 15.5 Conclusions and Outlook 513 References 515 16 Anisotropic Nanoparticles for Efficient Thermoelectric Devices 521 Nguyen T. Mai, Derrick Mott, and Shinya Maenosono 16.1 Introduction 521 16.2 Chemical Synthesis Methods of Complex-Shaped TE NPs 523 16.2.1 Thermal Decomposition Method 523 16.2.2 Hydrothermal Method 523 16.2.3 Solvent-Based Reduction Method 523 16.2.4 Important Factors in the Synthesis Toward Complex-Shaped TE NPs 524 16.3 One-Dimensional TE NPs 525 16.3.1 Pb (Te, Se) System 525 16.3.2 (Bi, Sb) (Te, Se) System 528 16.4 Two-Dimensional TE NPs 531 16.4.1 Pb (Te, Se) System 531 16.4.2 (Bi, Sb) (Te, Se) System 531 16.5 Other Complex-Shaped TE NPs 535 16.6 Properties of Complex-Shaped TE NPs 538 16.7 Conclusions and Future Outlook 540 References 541 Index 545

最近チェックした商品