Modeling Solvent Environments : Applications to Simulations of Biomolecules (2010. XVI, 352 p. w. 200 b&w and 35 col. figs. 240 mm)

個数:

Modeling Solvent Environments : Applications to Simulations of Biomolecules (2010. XVI, 352 p. w. 200 b&w and 35 col. figs. 240 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 368 p.
  • 商品コード 9783527324217

Full Description

A comprehensive view of the current methods for modeling solvent environments with contributions from the leading researchers in the field. Throughout, the emphasis is placed on the application of such models in simulation studies of biological processes, although the coverage is sufficiently broad to extend to other systems as well. As such, this monograph treats a full range of topics, from statistical mechanics-based approaches to popular mean field formalisms, coarse-grained solvent models, more established explicit, fully atomic solvent models, and recent advances in applying ab initio methods for modeling solvent properties.

Contents

BIOMOLECULAR SOLVATION IN THEORY AND EXPERIMENT
Introduction
Theoretical Views of Solvation
Computer Simulation Methods in the Study of Solvation
Experimental Methods in the Study of Solvation
Hydration of Proteins
Hydration of Nucleic Acids
Non-Aqueous Solvation
Summary
MODEL-FREE "SOLVENT MODELING" IN CHEMISTRY AND BIOCHEMISTRY BASED ON THE STATISTICAL MECHANICS OF LIQUIDS
Introduction
Outline of the RISM and 3D-RISM Theories
Partial Molar Volume of Proteins
Detecting Water Molecules Trapped Inside Protein
Selective Ion Binding by Protein
Water Molecules Identified as a Substrate for Enzymatic hydrolysis of Cellulose
CO Escape Pathway in Myoglobin
Perspective
DEVELOPING FORCE FIELDS FROM THE MICROSCOPIC STRUCTURE OF SOLUTIONS: THE KIRKWOOD-BUFF APPROACH
Introduction
Biomolecular Force Fields
Examples of Problems with Current Force Fields
Kirkwood-Buff Theory
Applications of Kirkwood-Buff Theory
The General KBFF Approach
Technical Aspects of the KBFF Approach
Results for Urea and Water Binary Solutions
Preferential Interactions of Urea
Conclusions and Future Directions
OSMOLYTE INFLUENCE ON PROTEIN STABILITY: PERSPECTIVES OF THEORY AND EXPERIMENT
Introduction
Denaturing Osmolytes
Protecting Osmolytes
Mixed Osmolytes
Conclusions
MODELING AQUEOUS SOLVENT EFFECTS THROUGH LOCAL PROPERTIES OF WATER
The Role of Water and Cosolutes on Macromolecular Thermodynamics
Forces Induced by Water in Aqueous Solutions
Continuum Representation of Water
Modeling Water Effects on Proteins and Nucleic Acids
CONTINUUM ELECTROSTATICS SOLVENT MODELING WITH THE GENERALIZED BORN MODEL
Introduction: The Implicit Solvent Framework
The Generalized Born Model
Applications of the GB Model
Some Practical Considerations
Limitations of the GB Model
Conclusions and Outlook
IMPLICIT SOLVENT FORCE-FIELD OPTIMIZATION
Introduction
Theoretical Foundations of Implicit Solvent
Optimization of Implicit Solvent Force Fields
Concluding Remarks and Outlook
MODELING PROTEIN SOLUBILITY IN IMPLICIT SOLVENT
Introduction
The Models
Applications
Summary and Outlook
FAST ANALYTICAL CONTINUUM TREATMENTS OF SOLVATION
Introduction
The SASA Implicit Solvent Model: A Fast Surface Area Model
The FACTS Implicit Solvent Model. A Fast Generalized Born Approach
Conclusions
ON THE DEVELOPMENT OF STATE-SPECIFIC COARSE-GRAINED POTENTIALS OF WATER
Introduction
Methods of Computing Coarse-Grained Potentials of Liquid Water
Structural Properties and the "Representability" Problem of Coarse-Grained Liquid Water Models
Conclusions
MOLECULAR DYNAMICS SIMULATIONS OF BIOMOLECULES IN A POLARIZABLE COARSE-GRAINED SOLVENT
Introduction
Theory
Applications: Solvation of All-Atom Models of Biomolecules
Conclusions and Prospects
MODELING ELECTROSTATIC POLARIZATION IN BIOLOGICAL SOLVENTS
Introduction
Current Approaches for Modeling Electrostatic Polarization in Classical Force Fields
Parameterization of Charge Equilibration Models
Applications of Charge Equilibration Models for Biological Solvents
Toward Modeling of Membrane Ion Channel Systems: Molecular Dynamics Simulations of DMPC-Water and DPPC-Water Bilayer Systems
Conclusions and Future Directions

最近チェックした商品