持続可能な工業プロセス<br>Sustainable Industrial Processes (2009. 584 p. w. 400 figs. 24 cm)

個数:

持続可能な工業プロセス
Sustainable Industrial Processes (2009. 584 p. w. 400 figs. 24 cm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 584 p.
  • 商品コード 9783527315529

Full Description

There are various books on green chemistry on the market, but without focus on sustainable industrial processes. This resource provides an overview of the new trends and hot topics in process design, describing the challenge of designing industrial chemical processes that are up-to-date, sustainable, and economically feasible. The industrial applications are presented directly by the companies - a veritable "Who's Who" of the chemical industry - that developed these innovative technologies. It provides an essential reference for chemical engineers, chemists in industry, process engineers, catalytic chemists, materials scientists, and environmental chemists.

Contents

Preface XV

List of Contributors XIX

1 From Green to Sustainable Industrial Chemistry 1
Gabriele Centi and Siglinda Perathoner

1.1 Introduction 1

1.2 Principles of Green Chemistry, Sustainable Chemistry and Risk 11

1.3 Sustainable Chemical Production and REACH 36

1.4 International Chemicals Policy and Sustainability 43

1.5 Sustainable Chemistry and Inherently Safer Design 47

1.6 A Vision and Roadmap for Sustainability Through Chemistry 56

1.7 Conclusions 69

2 Methods and Tools of Sustainable Industrial Chemistry: Catalysis 73
Gabriele Centi and Siglinda Perathoner

2.1 Introduction 73

2.2 Catalysis as Enabling Factor of Sustainable Chemical Production 74

2.3 Homogeneous Catalysis and the Role of Multiphase Operations 77

2.4 Bio- and Bioinspired-Catalysts 103

2.5 Solid Acids and Bases 120

2.6 Redox Catalysis 158

2.7 Cascade and Domino Catalytic Reactions 184

2.8 Multicomponent Catalytic Reactions 186

2.9 Organocatalysis 187

2.10 Conclusions 188

3 Methods and Tools of Sustainable Industrial Chemistry: Process Intensification 199
Gabriele Centi and Siglinda Perathoner

3.1 Introduction 199

3.2 Alternative Sources and Forms of Energy for Process Intensification 230

3.3 Micro(structured)-Reactors 243

4 Membrane Technologies at the Service of Sustainable Development Through Process Intensification 257
Gilbert M. Rios, Marie-Pierre Belleville, Delphine Paolucci-Jeanjean, and José Sanchez

4.1 Introduction 257

4.2 From Definitions to Function: A Few Fundamental Ideas 258

4.3 The Need for More Integrated Views on Materials and Process Conditions 262

4.4 Use of Hybrid Processes and New Operating Modes: The Key to Many Problems 267

4.5 Safe Management of Membrane Integration in Industrial Processes: A Huge Challenge 273

4.6 Conclusions 276

5 Accounting for Chemical Sustainability 279
Gabriele Centi and Siglinda Perathoner

5.1 Introduction 279

5.2 Ecological Footprint 281

5.3 Ecological Indicators 283

5.4 Metrics for Environmental Analysis and Eco-Efficiency 283

5.5 Sustainability Accounting 292

5.6 E-Factor and Atom Economy 296

5.7 Energy Intensity 304

5.8 Environmental Impact Indicators 305

5.9 Sustainable Chemical Production Metrics 306

5.10 Life Cycle Tools 310

5.11 Conclusions 315

6 Synthesis of Propene Oxide: A Successful Example of Sustainable Industrial Chemistry 319
Fabrizio Cavani and Anne M. Gaffney

6.1 Introduction: Current Industrial Propene Oxide Production 319

6.2 PO-only Routes: Several Approaches for Sustainable Alternatives 323

6.3 Conclusions 358

7 Synthesis of Adipic Acid: On the Way to More Sustainable Production 367
Fabrizio Cavani and Stefano Alini

7.1 Introduction: The Adipic Acid Market 367

7.2 Current Technologies for AA Production 368

7.3 Alternatives for AA Production 385

7.4 Emerging and Developing Technologies for AA Production 402

7.5 An Overview: Several Possible Green Routes to AA, Some Sustainable, Others Not 413

8 Ecofining: New Process for Green Diesel Production from Vegetable Oil 427
Franco Baldiraghi, Marco Di Stanislao, Giovanni Faraci, Carlo Perego, Terry Marker, Chris Gosling, Peter Kokayeff, Tom Kalnes, and Rich Marinangeli

8.1 Introduction 427

8.2 From Vegetable Oil to Green Diesel 428

8.3 UOP/Eni Ecofining Process 434

8.4 Life Cycle Assessment 435

8.5 Conclusion 437

9 A New Process for the Production of Biodiesel by Transesterification of Vegetable Oils with Heterogeneous Catalysis 439
Edouard Freund

9.1 Introduction 439

9.2 Direct Use of Vegetable Oils 441

9.3 Methyl Ester Derived from Vegetable Oils 441

9.4 Homogeneous Process for the Production of Biodiesel 442

9.5 Improving the Transesterification Route: Esterfip-H 445

9.6 Future Improvements of the Process 447

9.7 Conclusion 448

10 Highly Sour Gas Processing in a More Sustainable World 449
François Lallemand and Ari Minkkinen

10.1 Introduction 449

10.2 Use of Activated MDEA for Acid Gas Removal 451

10.3 Process Performance Highlights 454

10.4 Case Study of the Use of Activated MDEA for Treatment of Very Sour Gas 454

10.5 Acid Gas Removal for Cycling and/or Disposal 456

10.6 Bulk H2S Removal for Disposal 458

10.7 SPREX Performance 459

10.8 Capital Cost and Energy Balance Comparison 460

10.9 Conclusions 461

11 BioETBE: A New Component for Gasoline 463
Marco Di Girolamo and Domenico Sanfilippo

11.1 Introduction 463

11.2 High Quality Oxygenated as Gasoline Components 463

11.3 ETBE Technology 466

12 Olefin/Paraffin Alkylation: Evolution of a "Green" Technology 475
Anne M. Gaffney and Philip J. Angevine

12.1 Introduction 475

12.2 Liquid Acid Catalysts 476

12.3 Zeolite Catalysts 484

12.4 AlkyClean Alkylation Process: A True Solid Acid Catalyst (SAC) Process 488

12.5 Conclusion 504

13 Towards the Direct Oxidation of Benzene to Phenol 507
Marco Ricci, Daniele Bianchi, and Rossella Bortolo

13.1 Introduction 507

13.2 Cumene Process 508

13.3 Solutia Process 514

13.4 Direct Oxidation of Benzene to Phenol with Hydrogen Peroxide 516

13.5 Perspectives 525

13.6 Conclusions 525

14 Friedel-Crafts Acylation of Aromatic Ethers Using Zeolites 529
Roland Jacquot and Philippe Marion

14.1 Introduction 529

14.2 Literature Background 530

14.3 Acylation of Anisole by Acetic Anhydride 530

14.3.1 Industrial Processes 531

14.4 Acylation of Veratrole by Acetic Anhydride Over HY Zeolite 533

14.5 Deactivation of the Catalysts 534

14.6 Benzoylation of Phenol Ether 536

14.7 Concluding Remarks 539

15 Green Sustainable Chemistry in the Production of Nicotinates 541
Roderick Chuck

15.1 Requirements for Green Processes 541

15.2 Significance of Niacin 542

15.3 Green Principles in the Manufacture of Niacin 542

15.4 Green Principles in Lonza's Niacinamide Process (5000 mtpa) 548

16 Introducing Green Metrics Early in Process Development. Comparative Assessment of Alternative Industrial Routes to Elliott's Alcohol, A Key Intermediate in the Production of Resmethrins 551
Paolo Righi, Goffredo Rosini, and Valerio Borzatta

16.1 Introduction 551

16.2 Elliott's Alcohol 552

16.3 An Alternative Synthesis of Elliott's Alcohol 554

16.4 Comparative Assessment of the Two Alternative Routes to Elliott's Alcohol 555

16.5 Driving the "Green" Improvement 561

16.6 Conclusions 561

17 Basell Spherizone Technology 563
Maurizio Dorini and Gabriele Mei

17.1 Introduction 563

17.2 Technology Evolution 563

17.3 Spherizone Technology 567

17.4 Technology Comparison 575

17.5 Environmental Considerations 576

References 578

Index 579

最近チェックした商品