機能性有機材料<br>Functional Organic Materials Vol.1 : Syntheses, Strategies and Applications (2006. XX, 592 p. 24 cm)

個数:

機能性有機材料
Functional Organic Materials Vol.1 : Syntheses, Strategies and Applications (2006. XX, 592 p. 24 cm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 612 p.
  • 商品コード 9783527313020

基本説明

有機分子を概観するレファレンス。カーボンナノチューブ、分子スイッチ、人工筋肉など最新機能性有機材料の合成と応用をまとめます。
I: 3-D-Carborish Pi-Systems - Nanotubes and Segments; II: Strategic Advances in Chromophore and Materials Syntheses; III: Molecular Muscles, Switches and Electronics; IV: Electronic Interaction and Structure.

Full Description

This timely overview of the syntheses for functional pi-systems focuses on target molecules that have shown interesting properties as materials or models in physics, biology and chemistry. The unique concept allows readers to select the right synthetic strategy for success, making it invaluable for a number of industrial applications.
A "must have" for everyone working in this new and rapidly expanding field.

Contents

Preface xiii

List of Contributors xviii

Part I 3-D Carbon-rich π-Systems - Nanotubes and Segments

1 Functionalization of Carbon Nanotubes 3
Andreas Hirsch and Otto Vostrowsky

1.1 Introduction to Carbon Nanotubes - A New Carbon Allotrope 3

1.2 Functionalization of Carbon Nanotubes 4

1.3 Covalent Functionalization 5

1.3.1 Halogenation of Carbon Nanotubes 5

1.3.1.1 Fluorination of Carbon Nanotubes 5

1.3.1.2 Chlorination of Carbon Nanotubes 7

1.3.1.3 Bromination of MWCNTs 7

1.3.1.4 Chemical Derivatization of "Fluoronanotubes" 7

1.3.2 Oxidation of CNTs - Oxidative Purification 8

1.3.2.1 Carboxylation of CNTs 8

1.3.2.2 Defect Functionalization - Transformation of Carboxylic Functions 10

1.3.3 Hydrogenation of Carbon Nanotubes 19

1.3.4 Addition of Radicals 19

1.3.5 Addition of Nucleophilic Carbenes 20

1.3.6 Sidewall Functionalization Through Electrophilic Addition 21

1.3.7 Functionalization Through Cycloadditions 21

1.3.7.1 Addition of Carbenes 21

1.3.7.2 Addition of Nitrenes 22

1.3.7.3 Nucleophilic Cyclopropanation - Bingel Reaction 24

1.3.7.4 Azomethine Ylides 24

1.3.7.5 [4+2]-Cycloaddition - Diels-Alder Reaction 26

1.3.7.6 Sidewall Osmylation of Individual SWCNTs 27

1.3.8 Aryl Diazonium Chemistry - Electrochemical Modification of Nanotubes 27

1.3.9 Reductive Alkylation and Arylation of Carbon Nanotubes 29

1.3.10 Addition of Carbanions - Reactions with Alkyllithium 30

1.3.11 Covalent Functionalization by Polymerization -"Grafting To" and "Grafting From" 31

1.4 Noncovalent Exohedral Functionalization -Functionalization with Biomolecules 32

1.5 Endohedral Functionalization 42

1.6 Conclusions 44

1.7 Experimental 44

References 49

2 Cyclophenacene Cut Out of Fullerene 59
Yutaka Matsuo and Eiichi Nakamura

2.1 Introduction 59

2.2 Synthesis of [10]Cyclophenacene π-Conjugated Systems from [60]Fullerene 63

2.2.1 Synthetic Strategy 63

2.2.2 Synthesis and Characterization of [10]Cyclophenacenes 64

2.2.3 Structural Studies and Aromaticity of [10]Cyclophenacene 67

2.2.4 Synthesis of Dibenzo-fused Corannulenes 69

2.2.5 Absorption and Emission of [10]Cyclophenacenes and Dibenzo Fused Corannulenes 70

2.3 Conclusion 72

2.4 Experimental 72

References 78

Part II Strategic Advances in Chromophore and Materials Synthesis

3 Cruciform π-Conjugated Oligomers 83
Frank Galbrecht, Torsten W. B_nnagel, Askin Bilge, Ullrich Scherf and Tony Farrell

3.1 Introduction 83

3.2 Oligomers with a Tetrahedral Core Unit 85

3.3 Oligomers with a Tetrasubstituted Benzene Core 91

3.4 Oligomers with a Tetrasubstituted Biaryl Core 95

3.5 Conclusion 113

3.6 Experimental 113

Acknowledgments 115

References 116

4 Design of π-Conjugated Systems Using Organophosphorus Building Blocks 119
Philip W. Dyer and Régis Réau

4.1 Introduction 119

4.2 Phosphole-containing π-Conjugated Systems 121

4.2.1 α,α'-Oligo(phosphole)s 123

4.2.2 Derivatives Based on 1,1'-Biphosphole Units 126

4.2.3 Mixed Oligomers Based on Phospholes with Other (Hetero)aromatics 129

4.2.4 Mixed Oligomers Based on Biphospholes with other (Hetero)aromatics 137

4.2.5 Mixed Oligomers Based on Phospholes with Ethenyl or Ethynyl Units 138

4.2.6 Polymers Incorporating Phospholes 140

4.2.7 Mixed Oligomers and Polymers Based on Dibenzophosphole or Dithienophosphole 143

4.3 Phosphine-containing π-Conjugated Systems 147

4.3.1 Polymers Based on p-Phenylenephosphine Units 147

4.3.2 Oligomers Based on Phosphine-Ethynyl Units 151

4.3.3 Mixed Derivatives Based on Arylphosphino Units 155

4.4 Phosphaalkene- and Diphosphene-containing π-Conjugated Systems 161

4.5 Conclusion 168

4.6 Selected Experimental Procedures 169

References 172

5 Diversity-oriented Synthesis of Chromophores by Combinatorial Strategies and Multi-component Reactions 179
Thomas J. J. Müller

5.1 Introduction 179

5.2 Combinatorial Syntheses of Chromophores 180

5.2.1 Combinatorial Azo Coupling 181

5.2.2 Combinatorial Condensation Reactions 182

5.2.3 Combinatorial Cross-coupling Reactions 187

5.2.4 Combinatorial Coordination Chemistry 197

5.3 Novel Multi-component Syntheses of Chromophores 199

5.3.1 Multi-component Condensation Reactions 199

5.3.2 Multi-component Cross-coupling Reactions 204

5.4 Conclusion and Outlook 215

5.5 Experimental Procedures 215

References 218

6 High-yield Synthesis of Shape-persistent Phenylene-Ethynylene Macrocycles 225
Sigurd Höger

6.1 Introduction 225

6.2 Synthesis 227

6.2.1 General 227

6.2.2 The Kinetic Approach 227

6.2.2.1 Statistical Reactions 227

6.2.2.2 Template-controlled Cyclizations 238

6.2.3 The Thermodynamic Approach 251

6.3 Conclusion 254

6.4 Experimental Procedures 255

References 258

7 Functional Materials via Multiple Noncovalent Interactions 261
Joseph R. Carlisle and Marcus Weck

7.1 Introduction 261

7.2 Biologically Inspired Materials via Multi-step Self-assembly 262

7.3 Small Molecule-based Multi-step Self-assembly 265

7.4 Polymer-based Self-assembly 275

7.4.1 Main-chain Self-assembly 276

7.4.2 Side-chain Self-assembly 279

7.4.3 Macroscopic Self-assembly 287

7.5 Conclusion and Outlook 288

References 289

Part III Molecular Muscles, Switches and Electronics

8 Molecular Motors and Muscles 295
Sourav Saha and J. Fraser Stoddart

8.1 Introduction 295

8.2 Mechanically Interlocked Molecules as Artificial Molecular Machines 297

8.3 Chemically Induced Switching of the Bistable Rotaxanes 299

8.3.1 A Bistable [2]Rotaxane Driven by Acid-Base Chemistry 300

8.3.2 A pH-driven Molecular Elevator 301

8.3.3 A Molecular Muscle Powered by Metal Ion Exchange 303

8.3.4 Redox and Chemically Controlled Molecular Switches and Muscles 304

8.3.4.1 Solution-phase Switching 305

8.3.4.2 Condensed-phase Switching 306

8.3.4.3 A Solid-state Nanomechanical Device 308

8.4 Electrochemically Controllable Bistable Rotaxanes 309

8.4.1 A Benzidine/Biphenol-based Molecular Switch 310

8.4.2 Electrochemically Controlled Switching of TTF/DNP-based [2]Rotaxanes 311

8.4.2.1 Solution-phase Switching 311

8.4.2.2 Metastability of a Redox-driven [2]Rotaxane SAM on Gold Surfaces 311

8.4.2.3 A TTF/DNP [2]Rotaxane-based Electrochromic Device 313

8.4.2.4 A Redox-driven [2]Rotaxane-based Molecular Switch Tunnel Junctions (MSTJs) Device 314

8.4.3 A Redox and Chemically Controllable Bistable Neutral [2]Rotaxane 315

8.4.3.1 Electrochemical Switching 315

8.4.3.2 Chemical Switching Induced by Lithium Ion (Li+) 316

8.5 Photochemically Powered Molecular Switches 316

8.5.1 Molecular Switching Caused by Photoisomerization 317

8.5.2 PET-induced Switching of an H-bonded Molecular Motor 318

8.5.3 MLCT-induced Switching of a Metal Ion-based Molecular Motor 319

8.5.4 A Photo-driven Molecular Abacus 320

8.6 Conclusions 322

Acknowledgments 322

References 323

9 Diarylethene as a Photoswitching Unit of Intramolecular Magnetic Interaction 329
Kenji Matsuda and Masahiro Irie

9.1 Introduction 329

9.2 Photochromic Spin Coupler 331

9.3 Synthesis of Diarylethene Biradicals 333

9.4 Photoswitching Using Bis(3-thienyl)ethene 335

9.5 Reversed Photoswitching Using Bis(2-thienyl)ethene 340

9.6 Photoswitching Using an Array of Photochromic Molecules 341

9.7 Development of a New Switching Unit 344

9.8 Conclusions 348

9.9 Experimental Procedures 348

Acknowledgments 349

References 350

10 Thiol End-capped Molecules for Molecular Electronics: Synthetic Methods, Molecular Junctions and Structure-Property Relationships 353
Kasper Nørgaard, Mogens Brøndsted Nielsen and Thomas Bjørnholm

10.1 Introduction 353

10.2 Synthetic Procedures 354

10.2.1 Protecting Groups for Arylthiols 354

10.2.1.1 Synthesis of Arylthiol "Alligator Clips" 354

10.2.2 One-terminal Wires 358

10.2.3 Two-terminal Wires 359

10.2.4 Three-terminal Wires 364

10.2.5 Four-terminal Wires 365

10.2.6 Caltrops 367

10.3 Electron Transport in Two- and Three-terminal Molecular Devices 368

10.3.1 Molecular Junctions 375

10.3.1.1 Scanning Tunneling-based Molecular Junctions 375

10.3.1.2 Conducting-probe Atomic Force Microscopy 379

10.3.1.3 Solution-phase Molecular STM Junctions 380

10.3.1.4 Break Junctions 381

10.3.1.5 Crossed Wires 382

10.3.1.6 Nanopore Junctions 382

10.3.1.7 Square-tip Junctions 383

10.3.1.8 Mercury Drop Junctions 384

10.3.1.9 Particle Junctions 384

10.3.1.10 Nanowire Junctions 385

10.3.1.11 Three-terminal Single-molecule Transistors 386

10.4 Summary and Outlook 387

10.5 Experimental 388

References 389

11 Nonlinear Optical Properties of Organic Materials 393
Stephen Barlow and Seth R. Marder

11.1 Introduction to Nonlinear Optics 393

11.1.1 Introduction 393

11.1.2 Linear and Nonlinear Polarization 394

11.1.3 Second-order Nonlinear Optical Effects 396

11.1.4 Measurement Techniques for Second-order Properties, β and χ(2) 397

11.1.5 Third-order Nonlinear Optical Effects 399

11.1.6 Measurement Techniques for 2PA Cross-section, δ 401

11.2 Second-order Chromophores for Electrooptic Applications 404

11.2.1 Design of Second-order Chromophores: the Two-level Model 404

11.2.2 Other Chromophore Designs 409

11.2.3 Other Considerations 411

11.2.4 High-performance Electooptic Poled-polymer Systems 413

11.3 Design and Application of Two-photon Absorbing Chromophores 418

11.3.1 Essential-state Models for Two-photon Cross-section 418

11.3.2 Chromophore Designs 420

11.3.3 Applications of Two-photon Absorption 427

11.4 Appendix: Units in NLO 430

Acknowledgments 431

References 431

Part IV Electronic Interaction and Structure

12 Photoinduced Electron Transfer Processes in Synthetically Modified DNA 441
Hans-Achim Wagenknecht

12.1 DNA as a Bioorganic Material for Electron Transport 441

12.2 Mechanism of Hole Transfer and Hole Hopping in DNA 444

12.3 Reductive Electron Transfer and Excess Electron Transport in DNA 446

12.3.1 Strategies for the Synthesis of DNA Donor-Acceptor Systems 446

12.3.2 Chromophore Functionalization of DNA Bases via Synthesis of DNA Building Blocks 448

12.3.3 DNA Base Modifications via a Solid-phase Synthetic Strategy 452

12.3.4 Chromophores as Artificial DNA Base Substitutes 454

12.4 Results from the Electron Transfer Studies 456

12.5 Outlook: Towards Synthetic Nanostructures Based on DNA-like Architecture 460

References 463

13 Electron Transfer of π-Functional Systems and Applications 465
Shunichi Fukuzumi

13.1 Introduction 465

13.2 Efficient Electron-transfer Properties of Zinc Porphyrins 467

13.3 Efficient Electron-transfer Properties of Fullerenes 474

13.4 Photoinduced Electron Transfer in Electron Donor-Acceptor Linked Molecules Mimicking the Photosynthetic Reaction Center 477

13.5 An Orthogonal π-Donor-Acceptor Dyad Affording an Infinite CS Lifetime 485

13.6 A Long-lived ET State Acting as an Efficient ET Photocatalyst 490

13.7 Organic Solar Cells Using Simple Donor-Acceptor Dyads 494

13.8 Organic Solar Cells Composed of Multi-porphyrin/C60 Supramolecular Assemblies 499

13.9 Conclusion 506

Acknowledgments 506

References 507

14 Induced π-Stacking in Acenes 511
John E. Anthony

14.1 Introduction 511

14.2 Anthracene 512

14.2.1 Monosubstituted Anthracene 514

14.2.2 Disubstituted Anthracene 517

14.2.3 Edge-substituted Anthracenes (Anthracene Functionalized at the 1,8- or 1,8,9-Positions) 522

14.2.4 Liquid Crystalline Anthracenes 525

14.2.5 Anthracene Self-assembly: Hydrogen Bonding 526

14.3 Tetracene (Naphthacene) 528

14.3.1 Ethynyltetracenes 530

14.3.2 Tetrasubstituted Tetracenes 532

14.4 Pentacene 534

14.5 Higher Acenes 540

14.6 Conclusion 541

Acknowledgments 542

References 542

15 Synthesis and Characterization of Novel Chiral Conjugated Materials 547
Andrzej Rajca and Makoto Miyasaka

15.1 Introduction 547

15.2 Synthetic Approaches to Highly Annelated Chiral π-Conjugated Systems 548

15.2.1 Helicenes 548

15.2.1.1 Photochemical Syntheses 549

15.2.1.2 Non-photochemical Syntheses 551

15.2.2 Double Helicenes and Chiral Polycyclic Aromatic Hydrocarbons 560

15.2.3 Tetraphenylenes and π-Conjugated Double Helices 563

15.3 Barriers for Racemization of Chiral π-Conjugated Systems 567

15.4 Strong Chiroptical Properties in Absorption, Emission and Refraction 570

15.4.1 Absorption and Emission 570

15.4.2 Refraction 572

15.5 Conclusion 574

Acknowledgments 574

References 574

Index 583

最近チェックした商品