分子内原子の量子論<br>The Quantum Theory of Atoms in Molecules : From Solid State to DNA and Drug Design (2007. 550 p. w. 250 figs. 24 cm)

個数:

分子内原子の量子論
The Quantum Theory of Atoms in Molecules : From Solid State to DNA and Drug Design (2007. 550 p. w. 250 figs. 24 cm)

  • 提携先の海外書籍取次会社に在庫がございます。通常約3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 500 p.
  • 商品コード 9783527307487

Full Description

This book distills the knowledge gained from research into atoms in molecules over the last 10 years into a unique, handy reference. Throughout, the authors address a wide audience, such that this volume may equally be used as a textbook without compromising its research-oriented character. Clearly structured, the text begins with advances in theory before moving on to theoretical studies of chemical bonding and reactivity. There follow separate sections on solid state and surfaces as well as experimental electron densities, before finishing with applications in biological sciences and drug-design.
The result is a must-have for physicochemists, chemists, physicists, spectroscopists and materials scientists.

Contents

Foreword vii

Preface xix

List of Abbreviations Appearing in this Volume xxvii

List of Contributors xxxiii

1 An Introduction to the Quantum Theory of Atoms in Molecules 1
Chérif F. Matta and Russell J. Boyd

1.1 Introduction 1

1.2 The Topology of the Electron Density 1

1.3 The Topology of the Electron Density Dictates the Form of Atoms in Molecules 5

1.4 The Bond and Virial Paths, and the Molecular and Virial Graphs 8

1.5 The Atomic Partitioning of Molecular Properties 9

1.6 The Nodal Surface in the Laplacian as the Reactive Surface of a Molecule 10

1.7 Bond Properties 10

1.7.1 The Electron Density at the BCP (pb) 11

1.7.2 The Bonded Radius of an Atom (rb), and the Bond Path Length 11

1.7.3 The Laplacian of the Electron Density at the BCP (∇2pb) 11

1.7.4 The Bond Ellipticity (є) 12

1.7.5 Energy Densities at the BCP 12

1.7.6 Electron Delocalization between Bonded Atoms: A Direct Measure of Bond Order 13

1.8 Atomic Properties 15

1.8.1 Atomic Electron Population [N(Ω)] and Charge [q(Ω)] 16

1.8.2 Atomic Volume [Vol.(Ω)] 16

1.8.3 Kinetic Energy [T(Ω)] 17

1.8.4 Laplacian [L(Ω)] 17

1.8.5 Total Atomic Energy [Ee(Ω)] 18

1.8.6 Atomic Dipolar Polarization [μ(Ω)] 20

1.8.7 Atomic Quadrupolar Polarization [Q(Ω)] 24

1.9 ''Practical'' Uses and Utility of QTAIM Bond and Atomic Properties 25

1.9.1 The Use of QTAIM Bond Critical Point Properties 25

1.9.2 The Use of QTAIM Atomic Properties 26

1.10 Steps of a Typical QTAIM Calculation 27

References 30

Part I Advances in Theory 35

2 The Lagrangian Approach to Chemistry 37
Richard F. W. Bader

2.1 Introduction 37

2.1.1 From Observation, to Physics, to QTAIM 37

2.2 The Lagrangian Approach 38

2.2.1 What is The Lagrangian Approach and What Does it Do? 38

2.2.2 The Lagrangian and the Action Principle - A Return to the Beginnings 39

2.2.3 Minimization of the Action 40

2.2.4 Steps in Minimizing the Action 41

2.3 The Action Principle in Quantum Mechanics 42

2.3.1 Schrödinger's Appeal to the Action 42

2.3.2 Schrödinger's Minimization 42

2.3.2.1 Two Ways of Expressing the Kinetic Energy 43

2.3.3 Obtaining an Atom from Schrödinger's Variation 44

2.3.3.1 The Role of Laplacian in the Definition of an Atom 45

2.3.4 Getting Chemistry from δG(Ψ, ∇Ψ; Ω) 46

2.4 From Schrödinger to Schwinger 48

2.4.1 From Dirac to Feynman and Schwinger 48

2.4.2 From Schwinger to an Atom in a Molecule 49

2.5 Molecular Structure and Structural Stability 52

2.5.1 Definition of Molecular Structure 52

2.5.2 Prediction of Structural Stability 53

2.6 Reflections and the Future 53

2.6.1 Reflections 53

2.6.2 The Future 55

References 57

3 Atomic Response Properties 61
Todd A. Keith

3.1 Introduction 61

3.2 Apparent Origin-dependence of Some Atomic Response Properties 62

3.3 Bond Contributions to ''Null'' Molecular Properties 64

3.4 Bond Contributions to Atomic Charges in Neutral Molecules 70

3.5 Atomic Contributions to Electric Dipole Moments of Neutral Molecules 71

3.6 Atomic Contributions to Electric Polarizabilities 73

3.7 Atomic Contributions to Vibrational Infrared Absorption Intensities 78

3.8 Atomic Nuclear Virial Energies 82

3.9 Atomic Contributions to Induced Electronic Magnetic Dipole Moments 88

3.10 Atomic Contributions to Magnetizabilities of Closed-Shell Molecules 90

References 94

4 QTAIM Analysis of Raman Scattering Intensities: Insights into the Relationship Between Molecular Structure and Electronic Charge Flow 95
Kathleen M. Gough, Richard Dawes, Jason R. Dwyer, and Tammy L. Welshman

4.1 Introduction 95

4.2 Background to the Problem 96

4.2.1 Conceptual Approach to a Solution 97

4.2.1.1 Experimental Measurement of Raman Scattering Intensities 97

4.2.1.2 Theoretical Modeling of Raman Scattering Intensities: What We Did and Why 99

4.3 Methodology 100

4.3.1 Modeling α and ∂α/∂r 101

4.3.2 Recouping α From the Wavefunction, With QTAIM 102

4.3.3 Recovering ∂α/∂r From QTAIM 103

4.4 Specific Examples of the Use of AIM2000 Software to Analyze Raman Intensities 103

4.4.1 Modeling α in H2 104

4.4.1.1 Modeling ∆α/∆r in H2 106

4.4.2 Modeling α and ∆α/∆r in CH4 106

4.4.3 Additional Exercises for the Interested Reader 108

4.5 Patterns in α That Are Discovered Through QTAIM 109

4.6 Patterns in ∂α/∂rCH That Apply Across Different Structures, Conformations, Molecular Types: What is Transferable? 111

4.6.1 Patterns in ∆α/∆rCH Revealed by QTAIM 111

4.6.1.1 QTAIM Analysis of ∆α/∆rCH in Small Alkanes 111

4.6.1.2 What Did We Learn From QTAIM That Can be Transferred to the Other Molecules? 113

4.7 What Can We Deduce From Simple Inspection of ∂α/∂rCH and ∂α/∂rCC From Gaussian? 114

4.7.1 Variations in ∂α/∂rCH Among the Alkanes 114

4.7.2 ∆α/∆rCH in Cycloalkanes, Bicycloalkanes, and Hedranes 116

4.7.3 Patterns That Emerge in ∆α/∆rCC of Alkanes 116

4.7.4 Unsaturated Hydrocarbons and the Silanes: C-H, C=C, and Si-Si Derivatives 117

4.8 Conclusion 118

References 119

5 Topological Atom-Atom Partitioning of Molecular Exchange Energy and its Multipolar Convergence 121
Michel Rafat and Paul L. A. Popelier

5.1 Introduction 121

5.2 Theoretical Background 123

5.3 Details of Calculations 128

5.4 Results and Discussion 130

5.4.1 Convergence of the Exchange Energy 130

5.4.2 Convergence of the Exchange Force 136

5.4.3 Diagonalization of a Matrix of Exchange Moments 136

5.5 Conclusion 139

References 139

6 The ELF Topological Analysis Contribution to Conceptual Chemistry and Phenomenological Models 141
Bernard Silvi and Ronald J. Gillespie

6.1 Introduction 141

6.2 Why ELF and What is ELF? 142

6.3 Concepts from the ELF Topology 144

6.3.1 The Synaptic Order 145

6.3.2 The Localization Domains 145

6.3.3 ELF Population Analysis 147

6.4 VSEPR Electron Domains and the Volume of ELF Basins 149

6.5 Examples of the Correspondence Between ELF Basins and the Domains of the VSEPR Model 153

6.5.1 Octet Molecules 153

6.5.1.1 Hydrides (CH4, NH3, H2O) 153

6.5.1.2 AX4 (CH4, CF4, SiCl4) 154

6.5.1.3 AX3E and AX2E2 (NCl3, OCl2) 154

6.5.2 Hypervalent Molecules 155

6.5.2.1 PCl5 and SF6 155

6.5.2.2 SF4 and ClF3 155

6.5.2.3 AX7 and AX6E Molecules 155

6.5.3 Multiple Bonds 156

6.5.3.1 C2H4 and C2H2 156

6.5.3.2 Si2Me4 and Si2Me2 157

6.6 Conclusions 158

References 159

Part II Solid State and Surfaces 163

7 Solid State Applications of QTAIM and the Source Function - Molecular Crystals, Surfaces, Host-Guest Systems and Molecular Complexes 165
Carlo Gatti

7.1 Introduction 165

7.2 QTAIM Applied to Solids - the TOPOND Package 166

7.2.1 QTAIM Applied to Experimental Densities: TOPXD and XD Packages 168

7.3 QTAIM Applied to Molecular Crystals 170

7.3.1 Urea 171

7.3.1.1 Urea: Packing Effects 172

7.4 QTAIM Applied to Surfaces 179

7.4.1 Si(111)(1*1) Clean and Hydrogen-covered Surfaces 180

7.4.2 Si(111)(2*1) Reconstructed Surface 184

7.5 QTAIM Applied to Host-Guest Systems 186

7.5.1 Type I Inorganic Clathrates A8Ga16Ge30 (A=Sr, Ba) 186

7.5.2 Sodium Electrosodalite 190

7.6 The Source Function: Theory 192

7.6.1 The Source Function and Chemical Transferability 194

7.6.2 Chemical Information from the Source Function: Long and Short-range Bonding Effects in Molecular Complexes 196

7.6.3 The Source Function: Latest Developments 201

References 202

8 Topology and Properties of the Electron Density in Solids 207
Víctor Luaña, Miguel A. Blanco, Aurora Costales, Paula Mori-Sánchez, and Angel Martín Penda's

8.1 Introduction 207

8.2 The Electron Density Topology and the Atomic Basin Shape 209

8.3 Crystalline Isostructural Families and Topological Polymorphism 213

8.4 Topological Classification of Crystals 215

8.5 Bond Properties - Continuity from the Molecular to the Crystalline Regime 217

8.6 Basin Partition of the Thermodynamic Properties 219

8.7 Obtaining the Electron Density of Crystals 222

References 227

9 Atoms in Molecules Theory for Exploring the Nature of the Active Sites on Surfaces 231
Yosslen Aray, Jesus Rodríguez, and David Vega

9.1 Introduction 231

9.2 Implementing the Determination of the Topological Properties of p(r) from a Three-dimensional Grid 231

9.3 An Application to Nanocatalyts - Exploring the Structure of the Hydrodesulfurization MoS2 Catalysts 236

9.3.1 Catalyst Models 237

9.3.2 The Full p(r) Topology of the MoS2 Bulk 241

9.3.3 The p(r) Topology of the MoS2 Edges 245

References 254

Part III Experimental Electron Densities and Biological Molecules 257

10 Interpretation of Experimental Electron Densities by Combination of the QTAMC and DFT 259
Vladimir G. Tsirelson

10.1 Introduction 259

10.2 Specificity of the Experimental Electron Density 261

10.3 Approximate Electronic Energy Densities 262

10.3.1 Kinetic and Potential Energy Densities 262

10.3.2 Exchange and Correlation Energy Densities 271

10.4 The Integrated Energy Quantities 275

10.5 Concluding Remarks 276

References 278

11 Topological Analysis of Proteins as Derived from Medium and Highresolution Electron Density: Applications to Electrostatic Properties 285
Laurence Leherte, Benoȋt Guillot, Daniel P. Vercauteren, Virginie Pichon-Pesme, Christian Jelsch, Angélique Lagoutte, and Claude Lecomte

11.1 Introduction 285

11.2 Methodology and Technical Details 287

11.2.1 Ultra-high X-ray Resolution Approach 287

11.2.2 Medium-resolution Approach 289

11.2.2.1 Promolecular Electron Density Distribution Calculated from Structure Factors 289

11.2.2.2 Promolecular Electron Density Distribution Calculated from Atoms 290

11.2.3 A Test System - Human Aldose Reductase 291

11.3 Topological Properties of Multipolar Electron Density Database 294

11.4 Analysis of Local Maxima in Experimental and Promolecular Mediumresolution Electron Density Distributions 298

11.4.1 Experimental and Promolecular Electron Density Distributions Calculated from Structure Factors 299

11.4.2 Promolecular Electron Density Distributions Calculated from Atoms (PASA Model) 301

11.5 Calculation of Electrostatic Properties from Atomic and Fragment Representations of Human Aldose Reductase 305

11.5.1 Medium- and High-resolution Approaches of Electrostatic Potential Computations 307

11.5.2 Electrostatic Potential Comparisons 309

11.5.3 Electrostatic Interaction Energies 312

11.6 Conclusions and Perspectives 312

References 314

12 Fragment Transferability Studied Theoretically and Experimentally with QTAIM - Implications for Electron Density and Invariom Modeling 317
Peter Luger and Birger Dittrich

12.1 Introduction 317

12.2 Experimental Electron-density Studies 318

12.2.1 Experimental Requirements 318

12.2.2 Recent Experimental Advances 319

12.2.2.1 Synchrotron Radiation Compared with Laboratory Sources 319

12.2.2.2 Data Collection at Ultra-low Temperatures (10-20 K) 321

12.3 Studying Transferability with QTAIM - Atomic and Bond Topological Properties of Amino Acids and Oligopeptides 323

12.4 Invariom Modeling 328

12.4.1 Invariom Notation, Choice of Model Compounds, and Practical Considerations 330

12.4.2 Support for Pseudoatom Fragments from QTAIM 331

12.5 Applications of Aspherical Invariom Scattering Factors 334

12.5.1 Molecular Geometry and Anisotropic Displacement Properties 334

12.5.2 Using the Enhanced Multipole Model Anomalous Dispersion Signal 335

12.5.3 Modeling the Electron Density of Oligopeptide and Protein Molecules 336

12.6 Conclusion 338

References 339

Part IV Chemical Bonding and Reactivity 343

13 Interactions Involving Metals - From ''Chemical Categories'' to QTAIM, and Backwards 345
Piero Macchi and Angelo Sironi

13.1 Introduction 345

13.2 The Electron Density in Isolated Metal Atoms - Hints of Anomalies 345

13.3 Two-center Bonding 349

13.3.1 The Dative Bond 350

13.3.1.1 Metal Carbonyls 351

13.3.1.2 Donor-Acceptor Interactions of Heavy Elements 352

13.3.2 Direct Metal-Metal Bonding 352

13.4 Three-center Bonding 356

13.4.1 π-Complexes 357

13.4.2 σ-Complexes 363

13.4.2.1 Dihydrogen and Dihydride Coordination 364

13.4.2.2 Agostic Interactions 364

13.4.2.3 Hydride Bridges 367

13.4.3 Carbonyl-supported Metal-Metal Interactions 370

13.5 Concluding Remarks 371

References 372

14 Applications of the Quantum Theory of Atoms in Molecules in Organic Chemistry - Charge Distribution, Conformational Analysis and Molecular Interactions 375
Jesús Hernández-Trujillo, Fernando Cortés-Guzmn, and Gabriel Cuevas

14.1 Introduction 375

14.2 Electron Delocalization 375

14.2.1 The Pair-density 375

14.2.2 3JHH Coupling Constants and Electron Delocalization 378

14.3 Conformational Equilibria 380

14.3.1 Rotational barriers 380

14.3.1.1 Rotational Barrier of Ethane 380

14.3.1.2 Rotational Barrier of 1,2-Disubstituted Ethanes 382

14.3.2 Anomeric Effect on Heterocyclohexanes 386

14.4 Aromatic Molecules 391

14.4.1 Electronic Structure of Polybenzenoid Hydrocarbons 391

14.5 Conclusions 395

References 396

15 Aromaticity Analysis by Means of the Quantum Theory of Atoms in Molecules 399
Eduard Matito, Jordi Poater, and Miquel Solà

15.1 Introduction 399

15.2 The Fermi Hole and the Delocalization Index 401

15.3 Electron Delocalization in Aromatic Systems 403

15.4 Aromaticity Electronic Criteria Based on QTAIM 404

15.4.1 The para-Delocalization Index (PDI) 404

15.4.2 The Aromatic Fluctuation Index (FLU) 406

15.4.3 The π-Fluctuation Aromatic Index (FLUπ) 407

15.5 Applications of QTAIM to Aromaticity Analysis 409

15.5.1 Aromaticity of Buckybowls and Fullerenes 409

15.5.2 Effect of Substituents on Aromaticity 412

15.5.3 Assessment of Clar's Aromatic π-Sextet Rule 416

15.5.4 Aromaticity Along the Diels-Alder Reaction. The Failure of Some Aromaticity Indexes 418

15.6 Conclusions 419

References 421

16 Topological Properties of the Electron Distribution in Hydrogen-bonded Systems 425
Ignasi Mata, Ibon Alkorta, Enrique Espinosa, Elies Molins, and José Elguero

16.1 Introduction 425

16.2 Topological Properties of the Hydrogen Bond 426

16.2.1 Topological Properties at the Bond Critical Point (BCP) 426

16.2.2 Integrated Properties 429

16.3 Energy Properties at the Bond Critical Point (BCP) 431

16.4 Topological Properties and Interaction Energy 435

16.5 Electron Localization Function, n(r) 438

16.6 Complete Interaction Range 440

16.6.1 Dependence of Topological and Energy Properties on the Interaction Distance 440

16.6.2 Perturbed Systems 448

16.7 Concluding Remarks 450

References 450

17 Relationships between QTAIM and the Decomposition of the Interaction Energy - Comparison of Different Kinds of Hydrogen Bond 453
Sławomir J. Grabowski

17.1 Introduction 453

17.2 Diversity of Hydrogen-bonding Interactions 456

17.3 The Decomposition of the Interaction Energy 459

17.4 Relationships between the Topological and Energy Properties of Hydrogen Bonds 460

17.5 Various Other Interactions Related to Hydrogen Bonds 464

17.5.1 H+...π Interactions 464

17.5.2 Hydride Bonds 466

17.6 Summary 467

References 468

Part V Application to Biological Sciences and Drug Design 471

18 QTAIM in Drug Discovery and Protein Modeling 473
Nagamani Sukumar and Curt M. Breneman

18.1 QSAR and Drug Discovery 473

18.2 Electron Density as the Basic Variable 474

18.3 Atom Typing Scheme and Generation of the Transferable Atom Equivalent (TAE) Library 476

18.4 TAE Reconstruction and Descriptor Generation 478

18.5 QTAIM-based Descriptors 480

18.5.1 TAE Descriptors 482

18.5.2 RECON Autocorrelation Descriptors 485

18.5.3 PEST Shape-Property Hybrid Descriptors 485

18.5.4 Electron Density-based Molecular Similarity Analysis 487

18.6 Sample Applications 489

18.6.1 QSAR/QSPR with TAE Descriptors 489

18.6.2 Protein Modeling with TAE Descriptors 491

18.7 Conclusions 492

References 494

19 Fleshing-out Pharmacophores with Volume Rendering of the Laplacian of the Charge Density and Hyperwall Visualization Technology 499
Preston J. MacDougall and Christopher E. Henze

19.1 Introduction 499

19.2 Computational and Visualization Methods 501

19.2.1 Computational Details 501

19.2.2 Volume Rendering of the Laplacian of the Charge Density 501

19.2.3 The Hyperwall 505

19.2.4 Hyper-interactive Molecular Visualization 505

19.3 Subatomic Pharmacophore Insights 507

19.3.1 Hydrogen-bonding Donor Sites 507

19.3.2 Inner-valence Shell Charge Concentration (i-VSCC) Features in Transition-metal Atoms 509

19.3.3 Misdirected Valence in the Ligand Sphere of Transition-metal Complexes 511

19.4 Conclusion 513

References 514

Index 515

最近チェックした商品