教師なし学習のためのナチュラル・コンピューティング<br>Natural Computing for Unsupervised Learning (Unsupervised and Semi-supervised Learning)

個数:
電子版価格
¥17,223
  • 電子版あり

教師なし学習のためのナチュラル・コンピューティング
Natural Computing for Unsupervised Learning (Unsupervised and Semi-supervised Learning)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 273 p.
  • 商品コード 9783319985657

Full Description

This book highlights recent research advances in unsupervised learning using natural computing techniques such as artificial neural networks, evolutionary algorithms, swarm intelligence, artificial immune systems, artificial life, quantum computing, DNA computing, and others. The book also includes information on the use of natural computing techniques for unsupervised learning tasks. It features several trending topics, such as big data scalability, wireless network analysis, engineering optimization, social media, and complex network analytics. It shows how these applications have triggered a number of new natural computing techniques to improve the performance of unsupervised learning methods. With this book, the readers can easily capture new advances in this area with systematic understanding of the scope in depth. Readers can rapidly explore new methods and new applications at the junction between natural computing and unsupervised learning. 

Includes advances on unsupervised learning using natural computing techniques

Reports on topics in emerging areas such as evolutionary multi-objective unsupervised learning



Features natural computing techniques such as evolutionary multi-objective algorithms and many-objective swarm intelligence algorithms

Contents

Introduction.- Part I - Basic Natural Computing Techniques for Unsupervised Learning.- Hard Clustering using Evolutionary Algorithms.- Soft Clustering using Evolutionary Algorithms.- Fuzzy / Rough Set Systems for Unsupervised Learning.- Unsupervised Feature Selection using Evolutionary Algorithms.- Unsupervised Feature Selection using Artificial Neural Networks.- Part II - Advanced Natural Computing Techniques for Unsupervised Learning.- Hybrid Genetic Algorithms for Feature Subset Selection in Model-Based Clustering.- Nature-Inspired Optimization Approaches for Unsupervised Feature Selection.- Co-Evolutionary Approaches for Unsupervised Learning.- Mining Evolving Patterns using Natural Computing Techniques.- Multi-objective Optimization for Unsupervised Learning.- Many-objective Optimization for Unsupervised Learning.- Part III -  Applications.- Unsupervised Identification of DNA-binding Proteins using Natural Computing Techniques.- Parallel Solution-based Natural Clustering Techniques on Railway Engineering data.- Natural Computing Techniques for Community Detection on Online Social Networks.- Big Data Challenges and Scalability in Natural Computing for Unsupervised Learning.- Conclusion.

最近チェックした商品