Methods of Algebraic Geometry in Control Theory: Part II : Multivariable Linear Systems and Projective Algebraic Geometry (Modern Birkhauser Classics) (2018)

個数:

Methods of Algebraic Geometry in Control Theory: Part II : Multivariable Linear Systems and Projective Algebraic Geometry (Modern Birkhauser Classics) (2018)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 390 p.
  • 言語 ENG
  • 商品コード 9783319965734
  • DDC分類 516.35

Full Description

"An introduction to the ideas of algebraic geometry in the motivated context of system theory." This describes this two volume work which has been specifically written to serve the needs of researchers and students of systems, control, and applied mathematics. Without sacrificing mathematical rigor, the author makes the basic ideas of algebraic geometry accessible to engineers and applied scientists. The emphasis is on constructive methods and clarity rather than on abstraction. While familiarity with Part I is helpful, it is not essential, since a considerable amount of relevant material is included here.
Part I, Scalar Linear Systems and Affine Algebraic Geometry, contains a clear presentation, with an applied flavor , of the core ideas in the algebra-geometric treatment of scalar linear system theory. Part II extends the theory to multivariable systems. After delineating limitations of the scalar theory through carefully chosen examples, the author introduces seven representations of a multivariable linear system and establishes the major results of the underlying theory. Of key importance is a clear, detailed analysis of the structure of the space of linear systems including the full set of equations defining the space. Key topics also covered are the Geometric Quotient Theorem and a highly geometric analysis of both state and output feedback. 
Prerequisites are the basics of linear algebra, some simple topological notions, the elementary properties of groups, rings, and fields, and a basic course in linear systems. Exercises, which are an integral part of the exposition throughout, combined with an index and extensive bibliography of related literature make this a valuable classroom tool or good self-study resource. The present, softcover reprint is designed to make this classic textbook available to a wider audience.
"The exposition is extremely clear. In order to motivate the general theory, the author presents a number of examples of two or three input-, two-output systems in detail. I highly recommend this excellent book to all those interested in the interplay between control theory and algebraic geometry." —Publicationes Mathematicae, Debrecen
"This book is the multivariable counterpart of Methods of Algebraic Geometry in Control Theory, Part I.... In the first volume the simpler single-input-single-output time-invariant linear systems were considered and the corresponding simpler affine algebraic geometry was used as the required prerequisite. Obviously, multivariable systems are more difficult and consequently the algebraic results are deeper and less transparent, but essential in the understanding of linear control theory.... Each chapter contains illustrative examples throughout and terminates with some exercises for further study." —Mathematical Reviews

Contents

1 Scalar Input or Scalar Output Systems.- 2 Two or Three Input, Two Output Systems: Some Examples.- 3 The Transfer and Hankel Matrices.- 4 Polynomial Matrices.- 5 Projective Space.- 6 Projective Algebraic Geometry I: Basic Concepts.- 7 Projective Algebraic Geometry II: Regular Functions, Local Rings, Morphisms.- 8 Exterior Algebra and Grassmannians.- 9 The Laurent Isomorphism Theorem: I.- 10 Projective Algebraic Geometry III: Products, Graphs, Projections.- 11 The Laurent Isomorphism Theorem: II.- 12 Projective Algebraic Geometry IV: Families, Projections, Degree.- 13 The State Space: Realizations, Controllability, Observability, Equivalence.- 14 Projective Algebraic Geometry V: Fibers of Morphisms.- 15 Projective Algebraic Geometry VI: Tangents, Differentials, Simple Subvarieties.- 16 The Geometric Quotient Theorem.- 17 Projective Algebraic Geometry VII: Divisors.- 18 Projective Algebraic Geometry VIII: Intersections.- 19 State Feedback.- 20 Output Feedback.- Appendices.- A Formal Power Series, Completions, Regular Local Rings, and Hubert Polynomials.- B Specialization, Generic Points and Spectra.- C Differentials.- D The Space.- E Review of Affine Algebraic Geometry.- References.- Glossary of Notations.

最近チェックした商品