The Role of Laboratory Work in Improving Physics Teaching and Learning

個数:
電子版価格
¥17,124
  • 電子版あり

The Role of Laboratory Work in Improving Physics Teaching and Learning

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 278 p.
  • 言語 ENG
  • 商品コード 9783319961835

Full Description

This book explores in detail the role of laboratory work in physics teaching and learning. Compelling recent research work is presented on the value of experimentation in the learning process, with description of important research-based proposals on how to achieve improvements in both teaching and learning. The book comprises a rigorously chosen selection of papers from a conference organized by the International Research Group on Physics Teaching (GIREP), an organization that promotes enhancement of the quality of physics teaching and learning at all educational levels and in all contexts. The topics covered are wide ranging. Examples include the roles of open inquiry experiments and advanced lab experiments, the value of computer modeling in physics teaching, the use of web-based interactive video activities and smartphones in the lab, the effectiveness of low-cost experiments, and assessment for learning through experimentation. The presented research-based proposals will be of interest to all who seek to improve physics teaching and learning.

Contents

Introduction.- Part 1 Background Aspects.- Empowering the Engines of Knowing and Creativity: Learning from Experiments.- Labs in Building a Modern Physics Way of Thinking.- The Impact and Promise of Open-Source Computational Material for Physics Teaching.- Research Validated Distance Learning Labs for Introductory Physics Using IOLab.- The Value of Solving Experimental Problems in Groups.- Formative Assessment in Physics Teaching and Learning.- Part 2 Experimental Lab.- Integrating NOS in Lab Work.- Open Inquiry Experiments in Physics Laboratory Courses.- Educational Lab on Optical Diffraction to Bridge from Classical to Modern Physics.- Advanced Lab Experiments: Linking Undergraduate Labs and Research.- Part 3 Lab work and Multimedia.- Computer modelling in Physics Teaching.- Preparing Preservice Science Teachers to Develop Inquiry Based Activities.- The Role of Information in Inquiry-Based Learning in a Remote Lab on Optical Spectrometry.- Web-Based Interactive Video Activities for Undergraduate Advanced Laboratories.- Smartphones as Measuring Instruments in the Physics Classroom - What Do Students Think?.- Part 4 Concepts and Lab.- Addressing Some Common Difficulties in Teaching and Learning Energy in High School.- Teaching - Learning Sequences Using Low-Cost Experiments Aimed at Understanding of Concepts of Electricity.- Part 5 Assessment for Learning Through Experimentation.- Inquiry Based Learning of Contemporary Physics Topics and Gifted Students.- The Development and Pilot Testing of the Measurement Tool of Skills Level Development in the Lower Secondary Physics Classroom.- Assessing Student's Conceptual Understanding in a Laboratory on the Measurement of the Planck Constant.- Part 6 Low-cost Experiments and Inquiry.- Effectiveness of learning through inquiry.- A Non-Classical Acoustics Teaching Lab Supported by BYOD and Inquiry-Based Learning.- Quantitative measurements of RGB and CMYK colours with a homemade spectrophotometer.

最近チェックした商品