Practical Text Analytics : Maximizing the Value of Text Data (Advances in Analytics and Data Science)

個数:
電子版価格
¥10,821
  • 電子版あり

Practical Text Analytics : Maximizing the Value of Text Data (Advances in Analytics and Data Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 285 p.
  • 言語 ENG
  • 商品コード 9783319956626

Full Description

This book introduces text analytics as a valuable method for deriving insights from text data. Unlike other text analytics publications, Practical Text Analytics: Maximizing the Value of Text Data makes technical concepts accessible to those without extensive experience in the field. Using text analytics, organizations can derive insights from content such as emails, documents, and social media. 

Practical Text Analytics is divided into five parts. The first part introduces text analytics, discusses the relationship with content analysis, and provides a general overview of text mining methodology. In the second part, the authors discuss the practice of text analytics, including data preparation and the overall planning process. The third part covers text analytics techniques such as cluster analysis, topic models, and machine learning. In the fourth part of the book, readers learn about techniques used to communicate insights from text analysis, including data storytelling. The final part of Practical Text Analytics offers examples of the application of software programs for text analytics, enabling readers to mine their own text data to uncover information.

Contents

Chapter 1. Introduction to Text Analytics.- Chapter 2. Fundamentals of Content Analysis.- Chapter 3. Text Analytics Roadmap.- Chapter 4. Text Pre-Processing.- Chapter 5. Term-Document Representation.- Chapter 6. Semantic Space Representation and Latent Semantic Analysis.- Chapter 7. Cluster Analysis: Modeling Groups in Text.- Chapter 8. Probabilistic Topic Models.- Chapter 9. Classification Analysis: Machine Learning Applied to Text.- Chapter 10. Modeling Text Sentiment: Learning and Lexicon Models.- Chapter 11. Storytelling Using Text Data.- Chapter 12. Visualizing Results.- Chapter 13. Sentiment Analysis of Movie Reviews using R.- Chapter 14. Latent Semantic Analysis (LSA) in Python.- Chapter 15. Learning-Based Sentiment Analysis using RapidMiner.- Chapter 16. SAS Visual Text Analytics.

最近チェックした商品