凸最適化(テキスト・第2版)<br>Lectures on Convex Optimization (Springer Optimization and Its Applications) (2ND)

個数:
電子版価格
¥10,887
  • 電子版あり

凸最適化(テキスト・第2版)
Lectures on Convex Optimization (Springer Optimization and Its Applications) (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 589 p.
  • 言語 ENG
  • 商品コード 9783319915777

Full Description

This book provides a comprehensive, modern introduction to convex optimization, a field that is becoming increasingly important in applied mathematics, economics and finance, engineering, and computer science, notably in data science and machine learning.

Written by a leading expert in the field, this book includes recent advances in the algorithmic theory of convex optimization, naturally complementing the existing literature. It contains a unified and rigorous presentation of the acceleration techniques for minimization schemes of first- and second-order. It provides readers with a full treatment of the smoothing technique, which has tremendously extended the abilities of gradient-type methods. Several powerful approaches in structural optimization, including optimization in relative scale and polynomial-time interior-point methods, are also discussed in detail.

Researchers in theoretical optimization as well as professionals working on optimization problems will findthis book very useful. It presents many successful examples of how to develop very fast specialized minimization algorithms. Based on the author's lectures, it can naturally serve as the basis for introductory and advanced courses in convex optimization for students in engineering, economics, computer science and mathematics.

Contents

Introduction.- Part I Black-Box Optimization.- 1 Nonlinear Optimization.- 2 Smooth Convex Optimization.- 3 Nonsmooth Convex Optimization.- 4 Second-Order Methods.- Part II Structural Optimization.- 5 Polynomial-time Interior-Point Methods.- 6 Primal-Dual Model of Objective Function.- 7 Optimization in Relative Scale.- Bibliographical Comments.- Appendix A. Solving some Auxiliary Optimization Problems.- References.- Index.