Elliptic Systems of Phase Transition Type (Progress in Nonlinear Differential Equations and Their Applications) (2018)

個数:
電子版価格
¥17,124
  • 電子版あり

Elliptic Systems of Phase Transition Type (Progress in Nonlinear Differential Equations and Their Applications) (2018)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 343 p.
  • 言語 ENG
  • 商品コード 9783319905716
  • DDC分類 515.352

Full Description

This book focuses on the vector Allen-Cahn equation, which models coexistence of three or more phases and is related to Plateau complexes - non-orientable objects with a stratified structure. The minimal solutions of the vector equation exhibit an analogous structure not present in the scalar Allen-Cahn equation, which models coexistence of two phases and is related to minimal surfaces. The 1978 De Giorgi conjecture for the scalar problem was settled in a series of papers: Ghoussoub and Gui (2d), Ambrosio and Cabré (3d), Savin (up to 8d), and del Pino, Kowalczyk and Wei (counterexample for 9d and above). This book extends, in various ways, the Caffarelli-Córdoba density estimates that played a major role in Savin's proof. It also introduces an alternative method for obtaining pointwise estimates.

Key features and topics of this self-contained, systematic exposition include:

• Resolution of the structure of minimal solutions in the equivariant class, (a) for general point groups, and (b) for general discrete reflection groups, thus establishing the existence of previously unknown lattice solutions.

• Preliminary material beginning with the stress-energy tensor, via which monotonicity formulas, and Hamiltonian and Pohozaev identities are developed, including a self-contained exposition of the existence of standing and traveling waves.

• Tools that allow the derivation of general properties of minimizers, without any assumptions of symmetry, such as a maximum principle or density and pointwise estimates.

• Application of the general tools to equivariant solutions rendering exponential estimates, rigidity theorems and stratification results.

This monograph is addressed to readers, beginning from the graduate level, with an interest in any of the following: differential equations - ordinary or partial; nonlinear analysis; the calculus of variations; the relationship of minimal surfaces to diffuse interfaces; or theapplied mathematics of materials science.

Contents

Introduction.- Connections.- Basics for the PDE System.- The Cut-Off Lemma and a Maximum Principle.- Estimates.- Symmetry and the Vector Allen-Cahn Equation: the Point Group in Rn.- Symmetry and the Vector Allen-Cahn Equation: Crystalline and Other Complex Structures.- Hierarchical Structure - Stratification.- Vector Minimizers in R2.- Radial Solutions of ∆u = c2u.