Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing : EPASA 2015, Tsukuba, Japan, September 2015 (Lecture Notes in Computational Science and Engineering)

個数:

Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing : EPASA 2015, Tsukuba, Japan, September 2015 (Lecture Notes in Computational Science and Engineering)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 313 p.
  • 商品コード 9783319873091

Full Description

This book provides state-of-the-art and interdisciplinary topics on solving matrix eigenvalue problems, particularly by using recent petascale and upcoming post-petascale supercomputers. It gathers selected topics presented at the International Workshops on Eigenvalue Problems: Algorithms; Software and Applications, in Petascale Computing (EPASA2014 and EPASA2015), which brought together leading researchers working on the numerical solution of matrix eigenvalue problems to discuss and exchange ideas - and in so doing helped to create a community for researchers in eigenvalue problems. The topics presented in the book, including novel numerical algorithms, high-performance implementation techniques, software developments and sample applications, will contribute to various fields that involve solving large-scale eigenvalue problems.

Contents

An Error Resilience Strategy of a Complex Moment-Based Eigensolver: Akira Imakura, Yasunori Futamura, and Tetsuya Sakurai.- Numerical Integral Eigensolver for a Ring Region on the Complex Plane: Yasuyuki Maeda, Tetsuya Sakurai, James Charles, Michael Povolotskyi, Gerhard Klimeck, and Jose E. Roman.- A Parallel Bisection and Inverse Iteration Solver for a Subset of Eigenpairs of Symmetric Band Matrices: Hiroyuki Ishigami, Hidehiko Hasegawa, Kinji Kimura, and Yoshimasa Nakamura.- The Flexible ILU Preconditioning for Solving Large Nonsymmetric Linear Systems of Equations: Takatoshi Nakamura and Takashi Nodera.- Improved Coefficients for Polynomial Filtering in ESSEX: Martin Galgon, Lukas Krämer, Bruno Lang, Andreas Alvermann, Holger Fehske, Andreas Pieper, Georg Hager, Moritz Kreutzer, Faisal Shahzad, Gerhard Wellein, Achim Basermann, Melven Röhrig-Zöllner, and Jonas Thies.- Eigenspectrum Calculation of the O(a)-improved Wilson-Dirac Operator in Lattice QCD using the Sakurai-Sugiura Method: Hiroya Suno, Yoshifumi Nakamura, Ken-Ichi Ishikawa, Yoshinobu Kuramashi, Yasunori Futamura, Akira Imakura, and Tetsuya Sakurai.- Properties of Definite Bethe-Salpeter Eigenvalue Problems: Meiyue Shao and Chao Yang.- Preconditioned Iterative Methods for Eigenvalue Counts: Eugene Vecharynski and Chao Yang.- Comparison of Tridiagonalization Methods using High-precision Arithmetic with MuPAT: Ryoya Ino, Kohei Asami, Emiko Ishiwata, and Hidehiko Hasegawa.- Computation of Eigenvectors for a Specially Structured Banded Matrix: Hiroshi Takeuchi, Kensuke Aihara, Akiko Fukuda, and Emiko Ishiwata.- Monotonic Convergence to Eigenvalues of Totally Nonnegative Matrices in an Integrable variant of the Discrete Lotka-Volterra System: Akihiko Tobita, Akiko Fukuda, Emiko Ishiwata, Masashi Iwasaki, and Yoshimasa Nakamura.- Accuracy Improvement of the Shifted Block BiCGGR Method for Linear Systems with Multiple Shifts and Multiple Right-Hand Sides: Hiroto Tadano, Shusaku Saito, and Akira Imakura.- Memory-Saving Technique for the Sakurai-Sugiura Eigenvalue Solver using the Shifted Block Conjugate Gradient Method: Yasunori Futamura and Tetsuya Sakurai.- Filter Diagonalization Method by Using a Polynomial of a Resolvent as the Filter for a Real Symmetric-Definite Generalized Eigenproblem: Hiroshi Murakami.- Off-Diagonal Perturbation, First-Order Approximation and Quadratic Residual Bounds for Matrix Eigenvalue Problems: Yuji Nakatsukasa.- An Elementary Derivation of the Projection Method for Nonlinear Eigenvalue Problems Based on Complex Contour Integration: Yusaku Yamamoto.- Fast Multipole Method as a Matrix-Free Hierarchical Low-Rank Approximation: Rio Yokota, Huda Ibeid, and David Keyes.- Recent Progress in Linear Response Eigenvalue Problems: Zhaojun Bai and Ren-Cang Li.

最近チェックした商品