Big Data Factories : Collaborative Approaches (Computational Social Sciences)

個数:

Big Data Factories : Collaborative Approaches (Computational Social Sciences)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 141 p.
  • 言語 ENG
  • 商品コード 9783319865645
  • DDC分類 004

Full Description

The book proposes a systematic approach to big data collection, documentation and development of analytic procedures that foster collaboration on a large scale. This approach, designated as "data factoring" emphasizes the need to think of each individual dataset developed by an individual project as part of a broader data ecosystem, easily accessible and exploitable by parties not directly involved with data collection and documentation. Furthermore, data factoring uses and encourages pre-analytic operations that add value to big data sets, especially recombining and repurposing.
The book proposes a research-development agenda that can undergird an ideal data factory approach. Several programmatic chapters discuss specialized issues involved in data factoring (documentation, meta-data specification, building flexible, yet comprehensive data ontologies, usability issues involved in collaborative tools, etc.). The book also presents case studies for data factoring and processing that can lead to building better scientific collaboration and data sharing strategies and tools.
Finally, the book presents the teaching utility of data factoring and the ethical and privacy concerns related to it.
Chapter 9 of this book is available open access under a CC BY 4.0 license at link.springer.com

Contents

Chapter1. Introduction.- Part 1: Theoretical Principles and Approaches to Data Factories.-  Chapter2. Accessibility and Flexibility: Two Organizing Principles for Big Data Collaboration.- Chapter3. The Open Community Data Exchange: Advancing Data Sharing and Discovery in Open Online Community Science.- Part 2: Theoretical principles and ideas for designing and deploying data factory approaches.- Chapter4. Levels of Trace Data for Social and Behavioral Science Research.- Chapter5. The 10 Adoption Drivers of Open Source Software that Enables e-Research in Data Factories for Open Innovations.- Chapter6. Aligning online social collaboration data around social order: theoretical considerations and measures.- Part 3: Approaches in action through case studies of data based research, best practice scenarios, or educational briefs.- Chapter7. Lessons learned from a decade of FLOSS data collection.- Chapter8. Teaching Students How (NOT) to Lie, Manipulate, and Mislead with Information Visualizations.- Chapter9. Democratizing Data Science: The Community Data Science Workshops and Classes.

最近チェックした商品