Domain Adaptation in Computer Vision Applications (Advances in Computer Vision and Pattern Recognition)

個数:

Domain Adaptation in Computer Vision Applications (Advances in Computer Vision and Pattern Recognition)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 344 p.
  • 言語 ENG
  • 商品コード 9783319863832

Full Description

This comprehensive text/reference presents a broad review of diverse domain adaptation (DA) methods for machine learning, with a focus on solutions for visual applications. The book collects together solutions and perspectives proposed by an international selection of pre-eminent experts in the field, addressing not only classical image categorization, but also other computer vision tasks such as detection, segmentation and visual attributes.

Topics and features: surveys the complete field of visual DA, including shallow methods designed for homogeneous and heterogeneous data as well as deep architectures; presents a positioning of the dataset bias in the CNN-based feature arena; proposes detailed analyses of popular shallow methods that addresses landmark data selection, kernel embedding, feature alignment, joint feature transformation and classifier adaptation, or the case of limited access to the source data; discusses more recent deep DA methods, including discrepancy-based adaptation networks and adversarial discriminative DA models; addresses domain adaptation problems beyond image categorization, such as a Fisher encoding adaptation for vehicle re-identification, semantic segmentation and detection trained on synthetic images, and domain generalization for semantic part detection; describes a multi-source domain generalization technique for visual attributes and a unifying framework for multi-domain and multi-task learning.

This authoritative volume will be of great interest to a broad audience ranging from researchers and practitioners, to students involved in computer vision, pattern recognition and machine learning.

Contents

A Comprehensive Survey on Domain Adaptation for Visual Applications.- A Deeper Look at Dataset Bias.- Part I: Shallow Domain Adaptation Methods.- Geodesic Flow Kernel and Landmarks: Kernel Methods for Unsupervised Domain Adaptation.- Unsupervised Domain Adaptation based on Subspace Alignment.- Learning Domain Invariant Embeddings by Matching Distributions.- Adaptive Transductive Transfer Machines: A Pipeline for Unsupervised Domain Adaptation.- What To Do When the Access to the Source Data is Constrained?.- Part II: Deep Domain Adaptation Methods.- Correlation Alignment for Unsupervised Domain Adaptation.- Simultaneous Deep Transfer Across Domains and Tasks.- Domain-Adversarial Training of Neural Networks.- Part III: Beyond Image Classification.- Unsupervised Fisher Vector Adaptation for Re-Identification.- Semantic Segmentation of Urban Scenes via Domain Adaptation of SYNTHIA.- From Virtual to Real World Visual Perception using Domain Adaptation - The DPM as Example.- Generalizing Semantic Part Detectors Across Domains.- Part IV: Beyond Domain Adaptation: Unifying Perspectives.- A Multi-Source Domain Generalization Approach to Visual Attribute Detection.- Unifying Multi-Domain Multi-Task Learning: Tensor and Neural Network Perspectives.

最近チェックした商品