The Power of q : A Personal Journey (Developments in Mathematics)

個数:

The Power of q : A Personal Journey (Developments in Mathematics)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 415 p.
  • 言語 ENG
  • 商品コード 9783319862415

Full Description

This unique book explores the world of q, known technically as basic hypergeometric series, and represents the author's personal and life-long study—inspired by Ramanujan—of aspects of this broad topic. While the level of mathematical sophistication is graduated, the book is designed to appeal to advanced undergraduates as well as researchers in the field. The principal aims are to demonstrate the power of the methods and the beauty of the results. The book contains novel proofs of many results in the theory of partitions and the theory of representations, as well as associated identities. Though not specifically designed as a textbook, parts of it may be presented in course work; it has many suitable exercises.

After an introductory chapter, the power of q-series is demonstrated with proofs of Lagrange's four-squares theorem and Gauss's two-squares theorem. Attention then turns to partitions and Ramanujan's partition congruences. Several proofs of these are given throughout the book. Many chapters are devoted to related and other associated topics. One highlight is a simple proof of an identity of Jacobi with application to string theory. On the way, we come across the Rogers-Ramanujan identities and the Rogers-Ramanujan continued fraction, the famous "forty identities" of Ramanujan, and the representation results of Jacobi, Dirichlet and Lorenz, not to mention many other interesting and beautiful results. We also meet a challenge of D.H. Lehmer to give a formula for the number of partitions of a number into four squares, prove a "mysterious" partition theorem of H. Farkas and prove a conjecture of R.Wm. Gosper "which even Erdős couldn't do." The book concludes with a look at Ramanujan's remarkable tau function.

Contents

Foreword.- Preface.- 1. Introduction.- 2. Jacobi's two-squares and four-squares theorems.- 3. Ramanujan's partition congruences.- 4. Ramanujan's partition congruences— a uniform proof.- 5. Ramanujan's "most beautiful identity".- 6. Ramanujan's partition congruences for powers of 5.- 7. Ramanujan's partition congruences for powers of 7.- 8. Ramanujan's 5-dissection of Euler's product.- 9. A "difficult and deep" identity of Ramanujan.- 10. The quintuple product identity.- 11. Winquist's identity.- 12. The crank of a partition.- 13. Two more proofs of p(11n + 6) ≡ 0 (mod 11), and more.- 14. Partitions where even parts come in two colours.- 15. The Rogers-Ramanujan identities and the Rogers-Ramanujan continued fraction.- 16. The series expansion of the Rogers-Ramanujan continued fraction.- 17. The 2- and 4-dissections of Ramanujan's continued fraction and its reciprocal.- 18. The series expansion of the Ramanujan-Gollnitz-Gordon continued fraction and its reciprocal.- 19. Jacobi's "aequatio identica satis abstrusa".- 20. Two modular equations.- 21. A letter from Fitzroy House.- 22. The cubic functions of Borwein, Borwein and Garvan.- 23. Some classical results on representations.- 24. Further classical results on representations.- 25. Further results on representations.- 26. Even more representation results.- 27. Representation results and Lambert series.- 28. The Jordan-Kronecker identity.- 29. Melham's identities.- 30. Partitions into four squares.- 31. Partitions into four distinct squares of equal parity.- 32. Partitions with odd parts distinct.- 33. Partitions with even parts distinct.- 34. Some identities involving phi(q) and  psi(q).- 35. Some useful parametrisations.- 36. Overpartitions.- 37. Bipartitions with odd parts distinct.- 38. Overcubic partitions.- 39. Generalised Frobenius partitions.- 40. Somemodular equations of Ramanujan.- 41. Identities involving k = qR(q)R(q2)2.- 42. Identities involving v=q1/2(q,q7;q8)infinity/(q3,q5;q8)infinity.- 43. Ramanujan's tau function.- Appendix.- Index.

最近チェックした商品