Let History into the Mathematics Classroom (History of Mathematics Education)

個数:

Let History into the Mathematics Classroom (History of Mathematics Education)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 146 p.
  • 言語 ENG
  • 商品コード 9783319860886
  • DDC分類 370

Full Description

This book brings together 10 experiments which introduce historical perspectives into mathematics classrooms for 11 to 18-year-olds. The authors suggest that students should not only read ancient texts, but also should construct, draw and manipulate. The different chapters refer to ancient Greek, Indian, Chinese and Arabic mathematics as well as to contemporary mathematics. Students are introduced to well-known mathematicians—such as Gottfried Leibniz and Leonard Euler—as well as to less famous practitioners and engineers. Always, there is the attempt to associate the experiments with their scientific and cultural contexts.

 One of the main values of history is to show that the notions and concepts we teach were invented to solve problems. The different chapters of this collection all have, as their starting points, historic problems—mathematical or not. These are problems of exchanging and sharing, of dividing figures and volumes as well as engineers' problems, calculations, equations and congruence. The mathematical reasoning which accompanies these actions is illustrated by the use of drawings, folding, graphical constructions and the production of machines.

Contents

Angles in Secondary School: Surveying and Navigation.- Dividing a Triangle in the Middle Ages: An Example From the Latin Works on Practical Geometry.- A Square in a Triangle.- Indian Calculation: The Rule of Three--Quite a Story.- The Arithmetic of Juan de Ortega: Equations without Algebra.- The Congruence Machine of the Carissan Brothers.- A Graphical Approach to Euler's Method.- Calculating with Hyperbolas and Parabolas.- When Leibniz Plays Dice.- The Probability of Causes According to Condorcet.

最近チェックした商品