Achieving Consensus in Robot Swarms : Design and Analysis of Strategies for the best-of-n Problem (Studies in Computational Intelligence)

個数:

Achieving Consensus in Robot Swarms : Design and Analysis of Strategies for the best-of-n Problem (Studies in Computational Intelligence)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 146 p.
  • 言語 ENG
  • 商品コード 9783319851969
  • DDC分類 006.3

Full Description

This book focuses on the design and analysis of collective decision-making strategies for the best-of-n problem. After providing a formalization of the structure of the best-of-n problem supported by a comprehensive survey of the swarm robotics literature, it introduces the functioning of a collective decision-making strategy and identifies a set of mechanisms that are essential for a strategy to solve the best-of-n problem. The best-of-n problem is an abstraction that captures the frequent requirement of a robot swarm to choose one option from of a finite set when optimizing benefits and costs. The book leverages the identification of these mechanisms to develop a modular and model-driven methodology to design collective decision-making strategies and to analyze their performance at different level of abstractions. Lastly, the author provides a series of case studies in which the proposed methodology is used to design different strategies, usingrobot experiments to show how the designed strategies can be ported to different application scenarios.

Contents

Introduction.- Part 1:Background and Methodology.- Discrete Consensus Achievement in Artificial Systems.- Modular Design of Strategies for the Best-of-n Problem.- Part 2:Mathematical Modeling and Analysis.- Indirect Modulation of Majority-Based Decisions.- Direct Modulation of Voter-Based Decisions.- Direct Modulation of Majority-Based Decisions.- Part 3:Robot Experiments.- A Robot Experiment in Site Selection.- A Robot Experiment in Collective Perception.- Part 4:Discussion and Annexes.- Conclusions.- Background on Markov Chains.

最近チェックした商品