Nonlinear Model Predictive Control : Theory and Algorithms (Communications and Control Engineering) (2ND)

個数:

Nonlinear Model Predictive Control : Theory and Algorithms (Communications and Control Engineering) (2ND)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 456 p.
  • 言語 ENG
  • 商品コード 9783319834238
  • DDC分類 519

Full Description

This book offers readers a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. An introduction to nonlinear optimal control algorithms yields essential insights into how the nonlinear optimization routine—the core of any nonlinear model predictive controller—works. Accompanying software in MATLAB® and C++ (downloadable from extras.springer.com/), together with an explanatory appendix in the book itself, enables readers to perform computer experiments exploring thepossibilities and limitations of NMPC.
The second edition has been substantially rewritten, edited and updated to reflect the significant advances that have been made since the publication of its predecessor, including:

• a new chapter on economic NMPC relaxing the assumption that the running cost penalizes the distance to a pre-defined equilibrium;
• a new chapter on distributed NMPC discussing methods which facilitate the control of large-scale systems by splitting up the optimization into smaller subproblems;
• an extended discussion of stability and performance using approximate updates rather than full optimization;
• replacement of the pivotal sufficient condition for stability without stabilizing terminal conditions with a weaker alternative and inclusion of an alternative and much simpler proof in the analysis; and
• further variations and extensions in response to suggestions from readers of the first edition.
Though primarily aimed at academic researchers and practitioners working in control and optimization, the text is self-contained, featuring background material on infinite-horizon optimal control and Lyapunov stability theory that also makes it accessible for graduate students in control engineering and applied mathematics.

Contents

Introduction.- Discrete-Time and Sampled-Data Systems.- Nonlinear Model Predictive Control.- Infinite-Horizon Optimal Control.- Stability and Suboptimality Using Stabilizing Constraints.- Stability and Suboptimality Without Stabilizing Constraints.- Feasibility and Robustness.- Economic Nonlinear Model Predictive Control.- Distributed Nonlinear Model Predictive Control.- Variants and Extensions.- Numerical Discretization.- Numerical Optimal Control of Nonlinear Systems.- Appendix: NMPC Software Supporting This Book.

最近チェックした商品