Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry (Frontiers in Probability and the Statistical Sciences)

個数:

Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry (Frontiers in Probability and the Statistical Sciences)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 295 p.
  • 商品コード 9783319833774

Full Description

This book presents an overview of computational and statistical design and analysis of mass spectrometry-based proteomics, metabolomics, and lipidomics data. This contributed volume provides an introduction to the special aspects of statistical design and analysis with mass spectrometry data for the new omic sciences. The text discusses common aspects of design and analysis between and across all (or most) forms of mass spectrometry, while also providing special examples of application with the most common forms of mass spectrometry. Also covered are applications of computational mass spectrometry not only in clinical study but also in the interpretation of omics data in plant biology studies.

Omics research fields are expected to revolutionize biomolecular research by the ability to simultaneously profile many compounds within either patient blood, urine, tissue, or other biological samples. Mass spectrometry is one of the key analytical techniques used in these new omic sciences. Liquid chromatography mass spectrometry, time-of-flight data, and Fourier transform mass spectrometry are but a selection of the measurement platforms available to the modern analyst. Thus in practical proteomics or metabolomics,  researchers will not only be confronted with new high dimensional data types—as opposed to the familiar data structures in more classical genomics—but also with great variation between distinct types of mass spectral measurements derived from different platforms, which may complicate analyses, comparison, and interpretation of results.

Contents

Transformation, normalization and batch effect in the analysis of mass spectrometry data for omics studies.- Automated Alignment of Mass Spectrometry Data Using Functional Geometry.- The analysis of peptide-centric mass spectrometry data utilizing information about the expected isotope distribution.- Probabilistic and likelihood-based methods for protein identification from MS/MS data.- An MCMC-MRF Algorithm for Incorporating Spatial Information in IMS Data Processing.- Mass Spectrometry Analysis Using MALDIquant.- Model-based analysis of quantitative proteomics data with data independent acquisition mass spectrometry.- The analysis of human serum albumin proteoforms using compositional framework.- Variability Assessment of Label-Free LC-MS Experiments for Difference Detection.- Statistical approach for biomarker discovery using label-free LC-MS data - an overview.- Bayesian posterior integration for classification ofmass spectrometry data.- Logistic regression modeling on mass spectrometry data in proteomics case-control discriminant studies.- Robust and confident predictor selection in metabolomics.- On the combination of omics data for prediction of binary Outcomes.- Statistical analysis of lipidomics data in a case-control study.

最近チェックした商品