Quantum Measurement (Theoretical and Mathematical Physics)

個数:

Quantum Measurement (Theoretical and Mathematical Physics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 542 p.
  • 商品コード 9783319828091

Full Description

This is a book about the Hilbert space formulation of quantum mechanics and its measurement theory. It contains a synopsis of what became of the Mathematical Foundations of Quantum Mechanics since von Neumann's classic treatise with this title. Fundamental non-classical features of quantum mechanics—indeterminacy and incompatibility of observables, unavoidable measurement disturbance, entanglement, nonlocality—are explicated and analysed using the tools of operational quantum theory.

The book is divided into four parts: 1. Mathematics provides a systematic exposition of the Hilbert space and operator theoretic tools and relevant measure and integration theory leading to the Naimark and Stinespring dilation theorems; 2. Elements develops the basic concepts of quantum mechanics and measurement theory with a focus on the notion of approximate joint measurability; 3. Realisations offers in-depth studies of the fundamental observables of quantum mechanics and some of their measurement implementations; and 4. Foundations discusses a selection of foundational topics (quantum-classical contrast, Bell nonlocality, measurement limitations, measurement problem, operational axioms) from a measurement theoretic perspective.

The book is addressed to physicists, mathematicians and philosophers of physics with an interest in the mathematical and conceptual foundations of quantum physics, specifically from the perspective of measurement theory.

Contents

Introduction.- Part I Mathematics.- Rudiments of Hilbert Space Theory.- Classes of Compact Operators.- Operator Integrals and Spectral Representations: the Bounded Case.- Operator Integrals and Spectral Representations: the Unbounded Case.- Miscellaneous Algebraic and Functional Analytic Techniques.- Dilation Theory.- Positive Operator Measures: Examples.- Part II Elements.- States, Effects and Observables.- Measurement.- Joint Measurability.- Preparation Uncertainty.- Measurement Uncertainty.- Part III Realisations.- Qubits.- Position and Momentum.- Number and Phase.- Time and Energy.- State Reconstruction.- Measurement Implementations.- Part IV Foundations.- Bell Inequalities and Incompatibility.- Measurement Limitations due to Conservation Laws.- Measurement Problem.- Axioms for Quantum Mechanics.- Index.

最近チェックした商品