Twenty-One Lectures on Complex Analysis : A First Course (Springer Undergraduate Mathematics Series) (2017)

個数:

Twenty-One Lectures on Complex Analysis : A First Course (Springer Undergraduate Mathematics Series) (2017)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 194 p.
  • 言語 ENG
  • 商品コード 9783319681696
  • DDC分類 515

Full Description

At its core, this concise textbook presents standard material for a first course in complex analysis at the advanced undergraduate level. This distinctive text will prove most rewarding for students who have a genuine passion for mathematics as well as certain mathematical maturity. Primarily aimed at undergraduates with working knowledge of real analysis and metric spaces, this book can also be used to instruct a graduate course. The text uses a conversational style with topics purposefully apportioned into 21 lectures, providing a suitable format for either independent study or lecture-based teaching. Instructors are invited to rearrange the order of topics according to their own vision. A clear and rigorous exposition is supported by engaging examples and exercises unique to each lecture; a large number of exercises contain useful calculation problems. Hints are given for a selection of the more difficult exercises. This text furnishes the reader with a means of learning complexanalysis as well as a subtle introduction to careful mathematical reasoning. To guarantee a student's progression, more advanced topics are spread out over several lectures.

 

This text is based on a one-semester (12 week) undergraduate course in complex analysis that the author has taught at the Australian National University for over twenty years. Most of the principal facts are deduced from Cauchy's Independence of Homotopy Theorem allowing us to obtain a clean derivation of Cauchy's Integral Theorem and Cauchy's Integral Formula.  Setting the tone for the entire book, the material begins with a proof of the Fundamental Theorem of Algebra to demonstrate the power of complex numbers and concludes with a proof of another major milestone, the Riemann Mapping Theorem, which is rarely part of a one-semester undergraduate course.

Contents

1. Complex Numbers. The Fundamental Theorem of Algebra.- 2. R- and C-Differentiability.- 3 The Stereographic Projection. Conformal Maps. The Open Mapping Theorem.- 4. Conformal Maps (Continued). Möbius Transformations.- 5. Möbius Transformations (Continued). Generalised Circles. Symmetry.- 6. Domains Bounded by Pairs of Generalised Circles. Integration.- 7. Primitives Along Paths. Holomorphic Primitives on a Disk. Goursat's Lemma.- 8. Proof of Lemma 7.2. Homotopy. The Riemann Mapping Theorem.- 9. Cauchy's Independence of Homotopy Theorem. Jordan Domains.- 10. Cauchy's Integral Theorem. Proof of Theorem 3.1. Cauchy's Integral Formula.- 11. Morera's Theorem. Power Series. Abel's Theorem. Disk and Radius of Convergence.- 12. Power Series (Cont'd). Expansion of a Holomorphic Function. The Uniqueness Theorem.- 13. Liouville's Theorem. Laurent Series. Isolated Singularities.- 14. Isolated Singularities (Continued). Poles and Zeroes. Isolated Singularities at infinity.- 15. Isolated Singularities at infinity (Continued). Residues. Cauchy's Residue Theorem.- 16. Residues (Continued). Contour Integration. The Argument Principle 137.- 17. The Argument Principle (Cont'd). Rouché's Theorem. The Maximum Modulus Principle.- 18. Schwarz's Lemma. (Pre) Compactness. Montel's Theorem. Hurwitz's Theorem.- 19. Analytic Continuation.- 20. Analytic Continuation (Continued). The Monodromy Theorem.- 21. Proof of Theorem 8.3. Conformal Transformations of Simply- Connected Domains.- Index.

最近チェックした商品