Smooth Bézier Surfaces over Unstructured Quadrilateral Meshes (Lecture Notes of the Unione Matematica Italiana)

個数:
電子版価格
¥10,585
  • 電子版あり

Smooth Bézier Surfaces over Unstructured Quadrilateral Meshes (Lecture Notes of the Unione Matematica Italiana)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 192 p.
  • 言語 ENG
  • 商品コード 9783319638409
  • DDC分類 516

Full Description

Using an elegant mixture of geometry, graph theory and linear analysis, this monograph completely solves a problem lying at the interface of Isogeometric Analysis (IgA) and Finite Element Methods (FEM). The recent explosion of IgA, strongly tying Computer Aided Geometry Design to Analysis, does not easily apply to the rich variety of complex shapes that engineers have to design and analyse. Therefore new developments have studied the extension of IgA to unstructured unions of meshes, similar to those one can find in FEM. The following problem arises: given an unstructured planar quadrilateral mesh, construct a C1-surface, by piecewise Bézier or B-Spline patches defined over this mesh. This problem is solved for C1-surfaces defined over plane bilinear Bézier patches, the corresponding results for B-Splines then being simple consequences. The method can be extended to higher-order quadrilaterals and even to three dimensions, and the most recent developments in this direction are also mentioned here.

 

Contents

Introduction.- G1-smooth Surfaces.- C1 smooth surfaces.- MDSs: quadrilateral meshes.- Global MDSs.- MDSs for a smooth boundary.- Computational examples.- Conclusions.- Two-patch geometry and the G1 construction.- Illustrations for the thin plate problem.- Mixed MDSs of degrees 4 and 5.- Technical lemmas.- Minimisation problems.- G1 is equivalent to C1.- Bibliography.- References.

最近チェックした商品