Quadratic Residues and Non-Residues : Selected Topics (Lecture Notes in Mathematics)

個数:
電子版価格
¥10,464
  • 電子版あり

Quadratic Residues and Non-Residues : Selected Topics (Lecture Notes in Mathematics)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 292 p.
  • 言語 ENG
  • 商品コード 9783319459547

Full Description

This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory.

The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet's Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.

Contents

Chapter 1. Introduction: Solving the General Quadratic Congruence Modulo a Prime.- Chapter 2. Basic Facts.- Chapter 3. Gauss' Theorema Aureum: the Law of Quadratic Reciprocity.- Chapter 4. Four Interesting Applications of Quadratic Reciprocity.- Chapter 5. The Zeta Function of an Algebraic Number Field and Some Applications.- Chapter 6. Elementary Proofs.- Chapter 7. Dirichlet L-functions and the Distribution of Quadratic Residues.- Chapter 8. Dirichlet's Class-Number Formula.- Chapter 9. Quadratic Residues and Non-residues in Arithmetic Progression.- Chapter 10. Are quadratic residues randomly distributed?.- Bibliography.

最近チェックした商品