Genetic Programming Theory and Practice XIII (Genetic and Evolutionary Computation)

個数:

Genetic Programming Theory and Practice XIII (Genetic and Evolutionary Computation)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 262 p.
  • 商品コード 9783319342214

Full Description

These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: multi-objective genetic programming, learning heuristics, Kaizen programming, Evolution of Everything (EvE), lexicase selection, behavioral program synthesis, symbolic regression with noisy training data, graph databases, and multidimensional clustering. It also covers several chapters on best practices and lesson learned from hands-on experience. Additional application areas include financial operations, genetic analysis, and predicting product choice. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.

Contents

Evolving Simple Symbolic Regression Models by Multi-objective Genetic Programming.- Learning Heuristics for Mining RNA Sequence-Structure Motifs.- Kaizen Programming for Feature Construction for Classification.- GP as if You Meant It: An Exercise for Mindful Practice.- nPool: Massively Distributed Simultaneous Evolution and Cross-Validation in EC-Star.- Highly Accurate Symbolic Regression with Noisy Training Data.- Using Genetic Programming for Data Science: Lessons Learned.- The Evolution of Everything (EvE) and Genetic Programming.- Lexicase selection for program synthesis: a Diversity Analysis.- Using Graph Databases to Explore the Dynamics of Genetic Programming Runs.- Predicting Product Choice with Symbolic Regression and Classification.- Multiclass Classification Through Multidimensional Clustering.- Prime-Time: Symbolic Regression takes its place in the Real World.

最近チェックした商品