Stabilisation de la formule des traces tordue : Volume 2 (Progress in Mathematics)

個数:

Stabilisation de la formule des traces tordue : Volume 2 (Progress in Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 727 p.
  • 言語 FRE
  • 商品コード 9783319300573
  • DDC分類 512.7

Full Description

Ce travail en deux volumes donne la preuve de la stabilisation de la formule des trace tordue.

Stabiliser la formule des traces tordue est la méthode la plus puissante connue actuellement pour comprendre l'action naturelle du groupe des points adéliques d'un groupe réductif, tordue par un automorphisme, sur les formes automorphes de carré intégrable de ce groupe. Cette compréhension se fait en réduisant le problème, suivant les idées de Langlands, à des groupes plus petits munis d'un certain nombre de données auxiliaires; c'est ce que l'on appelle les données endoscopiques. L'analogue non tordu a été résolu par J. Arthur et dans ce livre on suit la stratégie de celui-ci.

Publier ce travail sous forme de livre permet de le rendre le plus complet possible. Les auteurs ont repris la théorie de l'endoscopie tordue développée par R. Kottwitz et D. Shelstad et par J.-P. Labesse.  Ils donnent  tous les arguments des démonstrations même si nombre d'entre eux se tr

ouvent déjà dans les travaux d'Arthur concernant le cas de la formule des traces non tordue.

Ce travail permet de rendre inconditionnelle la classification que J. Arthur a donnée des formes automorphes de carré intégrable pour les groupes classiques quasi-déployés, c'était  pour les auteurs une des principales motivations pour l'écrire.

Cette partie contient les preuves de la stabilisation géométrique et de la partie spectrale en particulier de la partie discrète de ce terme, ce qui est le point d'aboutissement de ce sujet.

Contents

I Endoscopie tordue sur un corps local.- II.1 Intégrales orbitales pondérées.- III Réductions et preuves.- IV Transfert spectral archimédien.- V Intégrales orbitales sur le corps réel.- VI La partie géométrique de la formule.- VII Descente globale.- VIII L'application E‾M, cas non-archimédien.- IX Le cas archimédien.- X Stabilisation spectrale.- XI Appendice.

最近チェックした商品