Graph Structures for Knowledge Representation and Reasoning : 4th International Workshop, GKR 2015, Buenos Aires, Argentina, July 25, 2015, Revised Selected Papers (Lecture Notes in Computer Science)

個数:

Graph Structures for Knowledge Representation and Reasoning : 4th International Workshop, GKR 2015, Buenos Aires, Argentina, July 25, 2015, Revised Selected Papers (Lecture Notes in Computer Science)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 155 p.
  • 言語 ENG
  • 商品コード 9783319287010
  • DDC分類 006.332

Full Description

This book constitutes the thoroughly refereed post-conference proceedings of the 4th International Workshop on Graph Structures for Knowledge Representation and Reasoning, GKR 2015, held in Buenos Aires, Argentina, in July 2015, associated with IJCAI 2015, the 24th International Joint Conference on Artificial Intelligence. The 9 revised full papers presented were carefully reviewed and selected from 10 submissions. The papers feature current research involved in the development and application of graph-based knowledge representation formalisms and reasoning techniques. They address the following topics: argumentation; conceptual graphs; RDF; and representations of constraint satisfaction problems.

Contents

Designing a Knowledge Representation Tool for Subject
Matter Structuring.- Aligning Experientially Grounded Ontologies using Language
Games.- An overview of argumentation frameworks for decision support.- Learning
Optimal Bayesian Networks with DAG Graphs.- Combinatorial results on directed
hypergraphs for the SAT problem.- Conceptual Graphs for Formally Managing and
Discovering Complementary Competences.- Subjective Networks: Perspectives and
Challenges.- RDF-SQ: Mixing Parallel and Sequential Computation For Top-down
OWL RL Inference.- Bring User Interest to Related Entity Recommendation.

最近チェックした商品