Néron Models and Base Change (Lecture Notes in Mathematics)

個数:

Néron Models and Base Change (Lecture Notes in Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 151 p.
  • 言語 ENG
  • 商品コード 9783319266374

Full Description

Presenting
the first systematic treatment of the behavior of Néron models under ramified
base change, this book can be read as an introduction to various subtle
invariants and constructions related to Néron models of semi-abelian varieties,
motivated by concrete research problems and complemented with explicit
examples.  

Néron models of abelian and
semi-abelian varieties have become an indispensable tool in algebraic and
arithmetic geometry since Néron introduced them in his seminal 1964 paper.
Applications range from the theory of heights in Diophantine geometry to Hodge
theory. 

We focus specifically on Néron component groups, Edixhoven's filtration
and the base change conductor of Chai and Yu, and we study these invariants
using various techniques such as models of curves, sheaves on Grothendieck
sites and non-archimedean uniformization. We then apply our results to the
study of motivic zeta functions of abelian varieties. The final chapter
contains alist of challenging open questions. This book is aimed towards
researchers with a background in algebraic and arithmetic geometry.

Contents

Normal
0




false
false
false

EN-US
X-NONE
X-NONE













MicrosoftInternetExplorer4













Introduction.- Preliminaries.- Models of curves and the
Neron component series of a Jacobian.- Component groups and
non-archimedean uniformization.- The base change conductor and Edixhoven's ltration.-
The base change conductor and the Artin conductor.- Motivic zeta functions of
semi-abelian varieties.- Cohomological interpretation of the motivic zeta
function.













































































































































/* Style Definitions */
table.MsoNormalTable
{mso-style-name:"Table Normal";
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-qformat:yes;
mso-style-parent:"";
mso-padding-alt:0in 5.4pt 0in 5.4pt;
mso-para-margin-top:0in;
mso-para-margin-right:0in;
mso-para-margin-bottom:10.0pt;
mso-para-margin-left:0in;
line-height:115%;
mso-pagination:widow-orphan;
font-size:11.0pt;
font-family:"Calibri","sans-serif";
mso-ascii-font-family:Calibri;
mso-ascii-theme-font:minor-latin;
mso-fareast-font-family:"Times New Roman";
mso-fareast-theme-font:minor-fareast;
mso-hansi-font-family:Calibri;
mso-hansi-theme-font:minor-latin;
mso-bidi-font-family:"Times New Roman";
mso-bidi-theme-font:minor-bidi;}

最近チェックした商品