エッセンシャル偏微分方程式(テキスト)<br>Essential Partial Differential Equations : Analytical and Computational Aspects (Springer Undergraduate Mathematics Series)

個数:

エッセンシャル偏微分方程式(テキスト)
Essential Partial Differential Equations : Analytical and Computational Aspects (Springer Undergraduate Mathematics Series)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 368 p.
  • 商品コード 9783319225685

Full Description

This volume provides an introduction to the analytical and numerical aspects of partial differential equations (PDEs). It unifies an analytical and computational approach for these; the qualitative behaviour of solutions being established using classical concepts: maximum principles and energy methods. Notable inclusions are the treatment of irregularly shaped boundaries, polar coordinates and the use of flux-limiters when approximating hyperbolic conservation laws. The numerical analysis of difference schemes is rigorously developed using discrete maximum principles and discrete Fourier analysis. A novel feature is the inclusion of a chapter containing projects, intended for either individual or group study, that cover a range of topics such as parabolic smoothing, travelling waves, isospectral matrices, and the approximation of multidimensional advection-diffusion problems.

The underlying theory is illustrated by numerous examples and there are around 300 exercises, designedto promote and test understanding. They are starred according to level of difficulty. Solutions to odd-numbered exercises are available to all readers while even-numbered solutions are available to authorised instructors.

Written in an informal yet rigorous style, Essential Partial Differential Equations is designed for mathematics undergraduates in their final or penultimate year of university study, but will be equally useful for students following other scientific and engineering disciplines in which PDEs are of practical importance. The only prerequisite is a familiarity with the basic concepts of calculus and linear algebra.

Contents

Setting the scene.- Boundary and initial data.- The origin of PDEs.- Classification of PDEs.- Boundary value problems in R1.- Finite difference methods in R1.- Maximum principles and energy methods.- Separation of variables.- The method of characteristics.- Finite difference methods for elliptic PDEs.- Finite difference methods for parabolic PDEs.- Finite difference methods for hyperbolic PDEs.- Projects.

最近チェックした商品