A Textbook on Ordinary Differential Equations (Unitext) (2ND)

個数:

A Textbook on Ordinary Differential Equations (Unitext) (2ND)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 331 p.
  • 言語 ENG
  • 商品コード 9783319164076
  • DDC分類 515.352

Full Description

This book offers readers a primer on the theory and applications of Ordinary Differential Equations. The style used is simple, yet thorough and rigorous. Each chapter ends with a broad set of exercises that range from the routine to the more challenging and thought-provoking. Solutions to selected exercises can be found at the end of the book. The book contains many interesting examples on topics such as electric circuits, the pendulum equation, the logistic equation, the Lotka-Volterra system, the Laplace Transform, etc., which introduce students to a number of interesting aspects of the theory and applications. The work is mainly intended for students of Mathematics, Physics, Engineering, Computer Science and other areas of the natural and social sciences that use ordinary differential equations, and who have a firm grasp of Calculus and a minimal understanding of the basic concepts used in Linear Algebra. It also studies a few more advanced topics, such as Stability Theory and Boundary Value Problems, which may be suitable for more advanced undergraduate or first-year graduate students. The second edition has been revised to correct minor errata, and features a number of carefully selected new exercises, together with more detailed explanations of some of the topics.

A complete Solutions Manual, containing solutions to all the exercises published in the book, is available. Instructors who wish to adopt the book may request the manual by writing directly to one of the authors.

Contents

1 First order linear differential equations.- 2 Theory of first order differential equations.- 3 First order nonlinear differential equations.- 4 Existence and uniqueness for systems and higher order equations.- 5 Second order equations.- 6 Higher order linear equations.- 7 Systems of first order equations.- 8 Qualitative analysis of 2x2 systems and nonlinear second order equations.- 9 Sturm Liouville eigenvalue theory.- 10 Solutions by infinite series and Bessel functions.- 11 Laplace transform.- 12 Stability theory.- 13 Boundary value problems.- 14 Appendix A. Numerical methods.- 15 Answers to selected exercises.

最近チェックした商品