Spatio-Temporal Data Analytics for Wind Energy Integration (Springerbriefs in Electrical and Computer Engineering) (2014)

個数:

Spatio-Temporal Data Analytics for Wind Energy Integration (Springerbriefs in Electrical and Computer Engineering) (2014)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 80 p.
  • 言語 ENG
  • 商品コード 9783319123189

Full Description

This SpringerBrief presents spatio-temporal data analytics for wind energy integration using stochastic modeling and optimization methods. It explores techniques for efficiently integrating renewable energy generation into bulk power grids. The operational challenges of wind, and its variability are carefully examined.
A spatio-temporal analysis approach enables the authors to develop Markov-chain-based short-term forecasts of wind farm power generation. To deal with the wind ramp dynamics, a support vector machine enhanced Markov model is introduced. The stochastic optimization of economic dispatch (ED) and interruptible load management are investigated as well.
Spatio-Temporal Data Analytics for Wind Energy Integration is valuable for researchers and professionals working towards renewable energy integration. Advanced-level students studying electrical, computer and energy engineering should also find the content useful.

Contents

Introduction.- A Spatio-Temporal Analysis Approach for Short-Term Forecast of Wind Farm Generation.- Support Vector Machine Enhanced Markov Model for Short-Term Wind Power Forecast.- Stochastic Optimization based Economic Dispatch and Interruptible Load Management.- Conclusions and Future Works.

最近チェックした商品