- ホーム
- > 洋書
- > ドイツ書
- > Mathematics, Sciences & Technology
- > Mathematics
Full Description
Hypercomplex analysis is the extension of complex analysis to higher dimensions where the concept of a holomorphic function is substituted by the concept of a monogenic function.
Contents
Symmetries and associated pairs in quaternionic analysis.- Generalized quaternionic Schur functions in the ball and half-space and Krein-Langer factorization.- The Fock space in the slice hyperholomorphic setting.- Multi Mq-monogenic function in different dimension.- The fractional monogenic signal.- Weighted Bergman spaces.- On Appell sets and Verma modules for sl(2).- Integral formulas for k-hypermonogenic functions in R3.- Spectral properties of compact normal quaternionic operators.- Three-dimensional quaternionic analogue of the Kolosov-Muskhelishvili formulae.- On the continuous coupling of finite elements with holomorphic basis functions.- On psi-hyperholomorphic functions and a decomposition of harmonics.- Fractional Clifford analysis.- Spectral properties of differential equations in Clifford algebras.- Differential equations in multicomplex spaces.



