Elementare Differentialgeometrie : Gekrümmte Kurven und Flächen (De Gruyter Studium 30) (3. Aufl. 2024. XIV, 352 S. 148 b/w and 7 col. ill., 3 b/w tbl. 240 mm)

個数:

Elementare Differentialgeometrie : Gekrümmte Kurven und Flächen (De Gruyter Studium 30) (3. Aufl. 2024. XIV, 352 S. 148 b/w and 7 col. ill., 3 b/w tbl. 240 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783111352749

Description


(Text)

Die dritte Auflage des bewährten Lehrbuchs bietet, vollständig überarbeitet und aktualisiert, eine fundierte und zugängliche Einführung in die Differentialgeometrie von Kurven und Flächen.

Beginnend mit klassischer euklidischer Geometrie deckt das Lehrbuch wichtige Themen wie Kurven- und Flächentheorie, die zentrale Bedeutung der Krümmung sowie analytische und topologische Aspekte ab. Auch Minimalflächen, hyperbolische Geometrie, Anwendungen in der Kartografie und der Satz von Gauß-Bonnet werden behandelt. Die mathematische Darstellung ist so gewählt, dass sich das Buch als Einstieg in die abstrakte riemannsche Geometrie eignet.

Eine der wichtigsten Erweiterungen in dieser Auflage ist die verbesserte Darstellung der Konstruktion von Triangulierungen. Durch Illustrationen und verständlichere Erklärungen wird nun ein noch tieferes und intuitiveres Verständnis der Materie ermöglicht.

Zu jedem Kapitel finden sich sorgfältig ausgewählte Übungsaufgaben, die das Gelernte vertiefen und anwenden lassen. Die meisten Aufgaben sind mit ausführlichen Lösungshinweisen versehen, die helfen, die Konzepte selbstständig zu meistern und das Wissen zu festigen.

(Author portrait)

__1990 Promotion an der Universität Bonn

__1994-1999 Professor an der Universität Freiburg

__1999-2003 Professor an der Universität Hamburg

__seit 2003 Professor an der Universität Potsdam

__2010-2011 Präsident der Deutschen Mathematiker-Vereinigung

__2016-2024 gewähltes Mitglied im Fachkollegium Mathematik der Deutschen Forschungsgemeinschaft

__ 2023-2024 Geschäftsführender Herausgeber bei Documenta Mathematica

__seit 2024 Chefredakteur von zbMATH

最近チェックした商品